Advertisement

The Graph Minor Theorem

  • Rodney G. Downey
  • Michael R. Fellows
Part of the Texts in Computer Science book series (TCS)

Abstract

We give a broad sketch of the ideas of the Graph Minor Theorem. We discuss excluding a forest and more general consequences of excluding a graph as a minor. We prove the Thomas Lemma on the existence of lean and linked decompositions. We discuss the related immersion and topological orderings.

Keywords

Planar Graph Disjoint Path Tree Decomposition Topological Ordering Topological Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 41.
    D. Archdeacon, A Kuratowski Theorem for the projective plane, PhD thesis, Ohio State University, 1980 Google Scholar
  2. 59.
    P. Bellenbaum, R. Diestel, Two short proofs concerning tree decompositions. Comb. Probab. Comput. 11(6), 541–547 (2002) MathSciNetMATHGoogle Scholar
  3. 65.
    D. Bienstock, N. Robertson, P. Seymour, R. Thomas, Quickly excluding a forest. J. Comb. Theory, Ser. B 52, 274–283 (1991) MathSciNetCrossRefMATHGoogle Scholar
  4. 220.
    R. Diestel, Graph minors 1: A short proof of the path-width theorem. Comb. Probab. Comput. 4, 27–30 (1995) MathSciNetCrossRefMATHGoogle Scholar
  5. 221.
    G. Ding, B. Oporowski, D. Sanders, D. Vertigan, Partitioning graphs of bounded tree-width. Combinatorica 18(1), 1–12 (1998) MathSciNetCrossRefMATHGoogle Scholar
  6. 222.
    M. Dinneen, Too many minor order obstructions (for parameterized lower ideals). J. Univers. Comput. Sci. 3(11), 1199–1206 (1997) MathSciNetMATHGoogle Scholar
  7. 247.
    R. Downey, M. Fellows, Parameterized Complexity. Monographs in Computer Science (Springer, Berlin, 1999) CrossRefGoogle Scholar
  8. 298.
    M. Fellows, M. Langston, Layout permutation problems and well-partially ordered sets, in Advanced Research in VLSI, Proceedings of the Fifth MIT Conference, March 1988, ed. by J. Allen, F. Leighton (MIT Press, Cambridge, 1988), pp. 315–327 Google Scholar
  9. 299.
    M. Fellows, M. Langston, Nonconstructive tools for proving polynomial-time complexity. J. ACM 35, 727–739 (1988) MathSciNetMATHGoogle Scholar
  10. 300.
    M. Fellows, M. Langston, An analogue of the Myhill–Nerode theorem and its use in computing finite-basis characterizations, in Proceedings of 30th Annual Symposium on Foundations of Computer Science, FOCS 1989, Research Triangle Park, North Carolina, USA, 30 October–1 November 1989 (IEEE Comput. Soc., Los Alamitos, 1989), pp. 520–525 Google Scholar
  11. 333.
    H. Friedman, N. Robertson, P. Seymour, The metamathematics of the graph minor theorem, in Logic and Combinatorics: Proceedings of the AMS–IMS–SIAM Joint Summer Research Conference, Arcata, California, 1985, ed. by S. Simpson. Contemporary Mathematics, vol. 65 (Am. Math. Soc., Providence, 1987), pp. 229–261 CrossRefGoogle Scholar
  12. 352.
    R. Govindan, M. Langston, B. Plaut, Graph partitioning and cutting, Technical report, Computer Science Department, University of Tennessee, 1997 Google Scholar
  13. 359.
    M. Grohe, K. Kawarabayashi, D. Marx, P. Wollan, Finding topological subgraphs is fixed-parameter tractable, in Proceedings of 43rd ACM Symposium on Theory of Computing (STOC ’11), San Jose, California, USA, June 6–June 8, 2011, ed. by L. Fortnow, S. Vadhan (ACM, New York, 2011), pp. 479–488 Google Scholar
  14. 360.
    M. Grohe, D. Marx, Descriptive complexity, canonisation, and definable graph structure theory, to appear Google Scholar
  15. 436.
    K. Kawarabayashi, P. Wollan, A shorter proof of the graph minor algorithm: the unique linkage theorem, in Proceedings of 42nd ACM Symposium on Theory of Computing (STOC 2010), Cambridge, MA, June 6–June 8, 2010, ed. by L. Schulman (ACM, New York, 2010), pp. 687–694 CrossRefGoogle Scholar
  16. 470.
    I. Kriz, R. Thomas, The Menger-like property of the tree-width of infinite graphs. J. Comb. Theory, Ser. B 52(1), 86–91 (1991) MathSciNetCrossRefGoogle Scholar
  17. 542.
    C. Nash-Williams, On well-quasi-ordering finite trees. Math. Proc. Camb. Philos. Soc. 59(4), 833–835 (1963) MathSciNetCrossRefMATHGoogle Scholar
  18. 581.
    N. Robertson, P. Seymour, Graph minors. I. Excluding a forest. J. Comb. Theory, Ser. B 35, 39–61 (1983) MathSciNetCrossRefMATHGoogle Scholar
  19. 583.
    N. Robertson, P. Seymour, Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7, 309–322 (1986) MathSciNetCrossRefMATHGoogle Scholar
  20. 584.
    N. Robertson, P. Seymour, Graph minors. V. Excluding a planar graph. J. Comb. Theory, Ser. B 41, 92–114 (1986) MathSciNetCrossRefMATHGoogle Scholar
  21. 585.
    N. Robertson, P. Seymour, Graph minors. IV. Tree-width and well quasi-ordering. J. Comb. Theory, Ser. B 48(2), 227–254 (1990) MathSciNetCrossRefMATHGoogle Scholar
  22. 588.
    N. Robertson, P. Seymour, Graph minors. XIII. The disjoint paths problem. J. Comb. Theory, Ser. B 63(1), 65–110 (1995) MathSciNetCrossRefMATHGoogle Scholar
  23. 589.
    N. Robertson, P. Seymour, Graph minors. XX. Wagner’s conjecture. J. Comb. Theory, Ser. B 92(2), 325–357 (2004) MathSciNetCrossRefMATHGoogle Scholar
  24. 619.
    S. Simpson, Subsystems of Second Order Arithmetic, 2nd edn. Perspectives in Logic (Cambridge University Press, Cambridge, 2009) CrossRefMATHGoogle Scholar
  25. 642.
    R. Thomas, Well-quasi-ordering infinite graphs with forbidden finite planar minor. Trans. Am. Math. Soc. 312(1), 279–313 (1989) CrossRefMATHGoogle Scholar
  26. 643.
    R. Thomas, A Menger-like property of tree-width, the finite case. J. Comb. Theory, Ser. B 48(1), 67–76 (1990) CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Rodney G. Downey
    • 1
  • Michael R. Fellows
    • 2
  1. 1.School of Mathematics, Statistics and Operations ResearchVictoria UniversityWellingtonNew Zealand
  2. 2.School of Engineering and Information TechnologyCharles Darwin UniversityDarwinAustralia

Personalised recommendations