Skip to main content

Control Systems

  • Chapter
  • First Online:
Magnetic Fusion Technology

Part of the book series: Lecture Notes in Energy ((LNEN,volume 19))

  • 2787 Accesses

Abstract

In addition to controlling the plasma parameters, we must control particle flow and power flow. Particle flow includes supply of DT fuel to the plasma core, removal of helium “ash”, and dealing with impurities from the walls, to maintain fuel density and avoid excessive radiation losses. Large power flows must be controlled and accommodated by the walls, limiter, and divertor; and plasma instabilities may concentrate high powers in small areas, causing material failures. Several tokamak divertor concepts are being modeled by computers and tested experimentally, including single null, double null, super X, and snowflake configurations, cooled by flowing helium in “T-tubes” or “fingers”. Liquid lithium wall coatings appear to benefit power and particle control in some experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Khalik S et al (2008) Experimental validation of thermal performance of gas-cooled divertors. International high heat flux components workshop, La Jolla, CA, 10–12 Dec 2008

    Google Scholar 

  • Asakura N et al (2010) Power exhaust simulation for the Slim CS divertor with the SONIC code. ARIES Town meeting on edge plasma physics and plasma material interactions in the fusion power plant regime, University of California, San Diego, May 2010

    Google Scholar 

  • ASDEX Team (1989) The H Mode of ASDEX, Nuclear Fusion 29, 1959, Fig. 20

    Google Scholar 

  • Canik JM, Maingi R, Kubota S, Ren Y, Bell RE, Callen JD, Guttenfelder W, Kugel HW, LeBlanc BP, Osborne TH, Soukhanovskii VA (2013) Edge transport and turbulence reduction with lithium coated plasma facing components in the National Spherical Torus Experiment. Phys Plasmas 18:056118, Fig. 2. Reprinted with permission from American Institute of Physics, Copyright 2011

    Google Scholar 

  • Cavinato M et al (2008) ITER vertical stabilization system, Symposium on Fusion Technology 2008, P3.20

    Google Scholar 

  • Dolan TJ (1982) Fusion research, Chap. 25. Pergamon Press, Elmsford, New York

    Google Scholar 

  • Dolan TJ (2011) Influence of scrape-off layer on plasma confinement. Phys Plasmas 18:032509

    Article  MathSciNet  Google Scholar 

  • Dolan TJ (2012) Lithium deuteride/lithium tritide pellet injection. Fusion Sci Technol 61:240–247

    Google Scholar 

  • Federici G, Andrew P, Barabaschi P, Brooks J, Doerner R, Geier A, Herrmann A, Janeschitz G, Krieger K, Kukushkin AS, Loarte A, Neu R, Saibene G, Shimada M, Strohmayer G, Sugihara M (2003) Key ITER plasma edge and plasma–material interaction issues. J Nucl Mater 313–316:11–22

    Google Scholar 

  • Greuner H, Boswirth B, Boscary J, Hofmann G, Mendelevitch B, Renner H, Rieck R (2003) Final design of W7-X divertor plasma facing components—tests and thermo-mechanical analysis of baffle prototypes. Fusion Eng Des 66–68:447–452

    Article  Google Scholar 

  • Hazeltine R, Hill D, Neilson H et al (2009) Research needs for magnetic fusion energy devices. In: Report of the research needs workshop (ReNeW), Office of Fusion Energy Sciences, US Department of Energy, Bethesda, Maryland, 9–12 June 2009

    Google Scholar 

  • Hennen BA et al (2009) A closed-loop control system for stabilization of MHD events on TEXTOR. Fusion Eng Des 84:928–934

    Article  Google Scholar 

  • Ihli T (2008) Divertors. KIT Summer School on Fusion Technology, Karlsruhe, Germany, 1–12 Sept 2008

    Google Scholar 

  • International Atomic Energy Agency (2011) 8th technical meeting on control, data acquisition and remote participation for fusion research, San Francisco, CA, USA, 20–24 June 2011

    Google Scholar 

  • Jaworski M, Gray TK, Antonelli M, Kim JJ, Lau CY, Lee MB, Neumann MJ, Xu W, Ruzic DN (2010) Thermoelectric magnetohydrodynamic stirring of liquid metals. Phys Rev Lett 104:094503

    Article  Google Scholar 

  • Jensen RV, Post RE, Jassby DL (1978) Critical impurity concentrations for power multiplication in beam-heated toroidal fusion reactors. Nucl Sci Eng 65:282–289. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USA, 1979

    Google Scholar 

  • JET Team (Prepared by Monk RD) (1999) Recent results from divertor and scrape-off layer studies at JET. Nucl Fusion 39:1751

    Google Scholar 

  • Kapitza PL (1979) Plasma and the controlled thermonuclear reaction. Science 205:959–964

    Article  Google Scholar 

  • Kotschenreuther M, Mahajan S, Valanju SP, Covelle B (2010) Divertor issues and magnetic geometry on FNSF. FNST/PFC/MASCO meeting, 2–6 Aug 2010. http://www.fusion.ucla.edu/FNST/

  • Krasheninnikov SI, Zakharov LE, Pereverzev GV (2003) On lithium walls and the performance of magnetic fusion devices. Phys Plasmas 10:1678–1682

    Article  Google Scholar 

  • Loarte A, Lipschultz B, Kukushkin AS et al (2007) Chapter 4: Power and particle control. Nucl Fusion 47:S2003–S263, Fig. 18a

    Google Scholar 

  • Lehnert B (1973) Stability of plasmas penetrated by neutral gas, Nucl Fusion 13:781–791

    Google Scholar 

  • Lore JD, Canik JM, Harris JH, Tipton J, Lumsdaine A (2011) Physics design calculations for the W7-X divertor scraper element, Oak Ridge National Laboratory, Presentation, U.S. Department of Energy, 17 Aug 2011

    Google Scholar 

  • Mansfield DK, Strachan JD, Bell MG, Scott SD, Budny R et al (1995) Enhanced performance of deuterium-tritium-fueled supershots using extensive lithium conditioning in the Tokamak Fusion Test Reactor. Phys Plasmas 2:4252

    Article  Google Scholar 

  • Maruyama S (2010) ITER fueling system, Karlsruhe Summer School on Fusion Technology, 13 Sept 2010

    Google Scholar 

  • Milora SL, Foster CA (1978) IEEE Trans Plasma Sci PS-6:578–582

    Google Scholar 

  • Milora SL, Houlberg WA, Lengyel LL, Mertens V (1995) Review paper—pellet fueling. Nucl Fusion 35:657–754

    Article  Google Scholar 

  • Mitri M, Nicolai D, Neubauer O, Lambertz HT, Schmidt I, Khilchenko A, Schweer B, Maier U, Samm U (2009) Optimized plasma stabilization at TEXTOR with an advanced, real-time digital control scheme. Fusion Eng Des 84:1329–1332

    Article  Google Scholar 

  • Moir RW (1997) Liquid first walls for magnetic fusion energy configurations, Lawrence Livermore Laboratory, Livermore, CA, UCRL-JC-125098. Nucl Fusion 37:557–566

    Google Scholar 

  • Moir RW (2000) Liquid walls for fusion reaction chambers. Comments Plasma Phy Control Fusion, Comments Mod Phys 2:99–111

    Google Scholar 

  • Neto A, Sartori F, Piccolo F, Barbalace A, Vitelli R, Fernandes H (2009) Linux real-time framework for fusion devices. Fusion Eng Des 84:1408–1411 JET-EFDA

    Article  Google Scholar 

  • Norajitra P (2008) EU divertor concepts for fusion power plants, KIT Summer School on Fusion Technology, Karlsruhe, Germany, 1–12 Sept 2008

    Google Scholar 

  • Oh YS et al (2008) Corsica-based optimal current profile control in DIII-D. In: Proceedings of the Symposium on Fusion Technology (SOFT), P3.27

    Google Scholar 

  • Ono M, Bell MG, Hirooka Y, Kaita R, Kugel HW, Mazzitelli G, Menard JE, Mirnov SV, Shimada M, Skinner CH, Tabares FL (2012) Conference report on the 2nd international symposium on lithium applications for fusion devices. Nucl Fusion 52:037001, 7 pp

    Google Scholar 

  • Pégourié B (2007) Review: pellet injection experiments and modeling. Plasma Phys Control Fusion 49:R87

    Article  Google Scholar 

  • Penaflor BG, Ferron JR, Walker ML, Humphreys DA, Leuer JA, Piglowski DA, Johnson RD, Xiao BJ, Hahn SH, Gates DA (2008) Worldwide collaborative efforts in plasma control software development. Fusion Eng Des 83:176–180

    Google Scholar 

  • Penaflor BG, Ferron JR, Walker ML, Humphreys DL, Leuer JA, Piglowski DA, Johnson RD, Xiao BJ, Hahn SH, Gates DA (2009) Extending the capabilities of the DIII-D Plasma Control System for worldwide fusion research collaborations. Fusion Eng Des 84:1484–1487

    Article  Google Scholar 

  • Pitts RA (2010) Key physics and materials aspects of plasma-wall interactions in ITER. ITER-IAEA technical meeting: ITER materials and technologies, Monaco, 25 November

    Google Scholar 

  • Podesta M, Bell RE, Diallo A, LeBlanc BP, Scotti F, NSTX Team (2012) Measurements of core lithium concentration in a Li-conditioned tokamak with carbon walls. Nucl Fusion 52:033008, 7 pp

    Google Scholar 

  • Raffray AR, El-Guebaly L, Malang S, Sviatoslavsky I, Tillack MS, Wang X, ARIES Team (2007) Advanced power core system for the ARIES-AT power plant. Fusion Eng Des 82:217–236, Fig. 19

    Google Scholar 

  • Raffray AR, Abdel-Khalik S, Ihli T, Malang S, Wang X (2008a) Example of US PFC/Divertor concepts for power plants. International high heat flux components workshop on readiness to proceed from near term fusion systems to power plants, University of California San Diego, La Jolla, CA, 10–12 Dec 2008

    Google Scholar 

  • Raffray AR, El-Guebaly L, Malang S, Wang XR, Bromberg L, Ihli T, Merrill B, Waganer L, ARIES-CS Team (2008b) Engineering design and analysis of the ARIES-CS power plant. Fusion Sci Technol 54(3):725–746, Fig. 18

    Google Scholar 

  • Raffray AR (2009) Fusion energy sciences advisory committee meeting, Gaithersburg, Maryland, USA, 13 Jan 2009

    Google Scholar 

  • Raman R (2006) Advanced fueling system for use as a burn control tool in a burning plasma device. Fusion Sci Technol 50:84

    Google Scholar 

  • Raman R (2008) Advanced fueling system for ITER. Fusion Eng Des 83:1368–1374

    Article  Google Scholar 

  • Rieth M, Hoffmann A (2008) Tungsten as structural material for power plant high heat flux components. In: International high heat flux components workshop, La Jolla, CA, 10–12 Dec 2008

    Google Scholar 

  • Rognlien TD (2008) Empirical and modeling scalings of SOL/divertor profiles. In: International high heat-flux component workshop, UCSD, San Diego, CA, 10–12 Dec 2008

    Google Scholar 

  • Ruzic DN, Xu W, Andruczyk D, Jaworski MA (2011) Lithium-metal infused trenches (LiMIT) for heat removal in fusion devices. Nucl Fusion 51:102002, 4 pp

    Google Scholar 

  • Ryutov DD (2007) Geometrical properties of a ‘snowflake’ divertor. Phys Plasmas 14:064502

    Article  Google Scholar 

  • Ryutov DD (2010) Snowflake divertors for power plants. In: ARIES Workshop, San Diego, CA, 20–21 May 2010

    Google Scholar 

  • Sharafat S, Mills S, Youchison D, Nygren R, Williams B, Ghoniem B (2007) Ultra Low Pressure-Drop Helium-Cooled Porous-Tungsten PFC. Fusion Sci Technol 52(3):559–565, Fig. 6. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USA, 1979

    Google Scholar 

  • Snipes JA, Campbell DJ, Haynes PS, Hender TC, Hugon M, Lomas PJ, Lopes Cardozo NJ, Nave MFF, Schuller FC (1988) Large amplitude quasi-stationary MHD modes in jet. Nucl Fusion 28:1085, Fig. 2, p 1087

    Google Scholar 

  • Tillack MS, Raffray AR, Wang XR, Malang S, Abdel-Khalik S, Yoda M, Youchison D (2011) Recent US activities on advanced He-cooled W-alloy divertor concepts for fusion power plants. Fusion Eng Des 86:71–98, Fig. 1

    Google Scholar 

  • Umansky MV, Rognlien TD, Ryutov DD, Snyder PB (2010) Edge plasma in snowflake divertor. Contrib Plasma Phys 50:350

    Article  Google Scholar 

  • Valanju PM, Kotschenreuther M, Mahajan SM (2010) Super X divertors for solving heat and neutron flux problems of fusion devices. Fusion Eng Des 85:46–52

    Article  Google Scholar 

  • Suttrop W et al (2008) In-vessel saddle coils for MHD control in ASDEX Upgrade, SOFT, O5.2

    Google Scholar 

  • Wang XR, Malang S, Raffray AR, Team ARIES (2009) Design optimization of high-performance helium-cooled divertor plate concept. Fusion Sci Technol 56:1023

    Google Scholar 

  • Wang XR, Malang S, Tillack MS, Team Aries (2011) High performance divertor target plate for a power plant: a combination of plate and finger concepts. Fusion Sci Technol 60:218

    Google Scholar 

  • Wang XR, Malang S, Tillack MS, Burke J, ARIES Team (2012) Recent improvements of the helium-cooled W-based divertor for fusion power plants. Fusion Eng Des 87:732–736, Fig. 1

    Google Scholar 

  • Wesson J (2011) Tokamaks, 4th edn. Oxford University Press, Clarendon

    MATH  Google Scholar 

  • Yu DL, Chen CY, Yao LH, Feng BB, Han XY (2010) Penetration characteristics of supersonic molecular beam injection on HL-2A tokamak. Nucl Fusion 50:035009, 9 pp, Fig. 1

    Google Scholar 

  • Zakharov LE, Gorelenkov NN, White RB, Krasheninnikov SI, Pereverzev GV (2004) Ignited spherical tokamaks and plasma regimes with Li walls. Fusion Eng Des 72:149–168

    Article  Google Scholar 

  • Zakharov LE, Li J, Wu Y (2010) Fusion-fission research facility (FFRF) as a practical step toward hybrids. In: Proceedings of the 18th conference on nuclear engineering ICONE18-30269, 17–21 May 2010, Xi’an, China, © American Society of Mechanical Engineers

    Google Scholar 

  • Zakharov LE (2011a) Li wall fusion—the new concept of magnetic fusion. Problems of Atomic Science and Technology, Series Thermonuclear Fusion, Vol 1, pp 29–38

    Google Scholar 

  • Zakharov LE (2011b) Basics of fusion-fission research facility (FFRF) as a fusion neutron source. Princeton Plasma Physics Laboratory Report 4629

    Google Scholar 

  • Zakharov LE, Li J, Wu Y (2011c) Fusion–fission research facility (FFRF) as a practical step toward hybrids. Problems of Atomic Science and Technology, Series Thermonuclear Fusion, vol 3, pp 27–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Dolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Dolan, T.J. (2013). Control Systems. In: Dolan, T. (eds) Magnetic Fusion Technology. Lecture Notes in Energy, vol 19. Springer, London. https://doi.org/10.1007/978-1-4471-5556-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5556-0_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5555-3

  • Online ISBN: 978-1-4471-5556-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics