Skip to main content

Fusion–Fission Hybrid Reactors

  • Chapter
  • First Online:
Magnetic Fusion Technology

Part of the book series: Lecture Notes in Energy ((LNEN,volume 19))

Abstract

A “Fusion-Fission Hybrid” is a fusion reactor that contains thorium, uranium or transuranic elements in its blanket. Fusion power plants usually require Q (fusion power/input power) values >10 to be economical. A hybrid could operate with Q ≲ 5, so it would be easier to build. Hybrids could be optimized for maximum power output, for fissile fuel breeding, or for incineration of radioactive wastes from fission power plants. A variety of reactors have been proposed, with attention to safety, radwaste, and nuclear nonproliferation issues. In a secure “Energy Park” one hybrid could provide fissile fuel for 6 satellite fission reactors of today’s generation or over 20 next generation reactors.

Wally Manheimer, Retired from the US Naval Research Laboratory

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Argonne National Laboratory (1963) Reactor physics constants. Argonne National Laboratory report, p 23

    Google Scholar 

  • Azechi H et al (2009) Plasma physics and laser development for the fast ignition realization experiment (FIREX) project. Nucl Fusion 49:104024

    Article  Google Scholar 

  • Badger et al (1975) UWMAK-II—a conceptual tokamak power reactor design. University of Wisconsin Rep. UWFDM-112

    Google Scholar 

  • Barr W et al (1977) Engineering of beam direct conversion for a 120 kV 1 MW ion beam. In: Proceedings of 7th symposium on engineering problems of fusion research, October

    Google Scholar 

  • Bechtel Corp (1977) Laser fusion–fission reactor systems study. U.S. ERDA Rep. UCRL-13796

    Google Scholar 

  • Bender DJ, Carlson DA (1978) System model for analysis of the mirror fusion/fission reactor. Lawrence Livermore National Laboratory Report UCRL-52293.

    Google Scholar 

  • Berwald DH et al (1982) Fission-suppressed hybrid reactor—the fusion breeder. Lawrence Livermore National Laboratory, Livermore, CA, UCID-19638

    Google Scholar 

  • Bethe H (1979) The fusion hybrid, Physics Today, May

    Google Scholar 

  • Blinkin LV, Novikov MV (1977) Optimal Symbiotic Molten-Salt Fission–Fusion/Fission System, I.V. Kurchatov Institute of Atomic Energy, preprint IAE-2819, Moscow, UCRL-Trans-11288

    Google Scholar 

  • Campbell D (2001) The physics of the international tokamak experimental reactor, FEAT. Phys Plasmas 8:2041

    Article  Google Scholar 

  • Chang Y (2002) Advanced fast reactor: a next generation nuclear energy concept. Forum on physics and society, April

    Google Scholar 

  • Chang Y (2009) Private communication

    Google Scholar 

  • Cheng ET (2005) Performance characteristics of actinide-burning fusion power plants. Fusion Sci Technol 47:1219–1223

    Google Scholar 

  • Fraser JS, Hoffman CRJ, Tunnicliffe PR (1973) The role of electricity produced neutrons in nuclear power generation. Chalk River Nuclear Laboratories Rep. AECL-4658

    Google Scholar 

  • Freidberg JP, Kadak AC (2009) Fusion-fission hybrids revisited. Nat Phys 5:370

    Article  Google Scholar 

  • Garwin R, Charpak G (2001) Megawatts and megatons. Alfred Knopf, New York

    Google Scholar 

  • Gibson A, The JET Team (1998) Deuterium-tritium plasmas in JET, behavior and implications. Phys Plasmas 5:1839

    Google Scholar 

  • Greenspan E et al (1977) Natural uranium fueled light water moderated breeding hybrid power reactors—a feasibility study. Princeton Plasma Physics Laboratory Rep. PPPL-1444

    Google Scholar 

  • Hawryluk R et al (1998) Fusion plasma experiments on TFTR: a 20 year retrospective. Phys Plasmas 5:1577

    Article  Google Scholar 

  • Hoffert M et al (2002) Advanced technology paths to global climate stability: energy for a greenhouse planet. Science 298:981

    Article  Google Scholar 

  • Holdren JP (1981) Fusion-fission hybrids: environmental aspects and their role in hybrid rationale. J Fusion Energy 1:197–210

    Article  Google Scholar 

  • Ide S, The JT-60 Team (2000) Latest progress in steady state plasma research on the Japan atomic energy research institute tokamak-60 upgrade. Phys Plasmas 7:1927

    Google Scholar 

  • Isayamab A, The JT-60 Team (2005) Steady-state sustainment of high-β plasmas through stability control in Japan atomic energy research institute tokamak-60 upgrade. Phys Plasmas 12:056117

    Google Scholar 

  • Ishida S, The JT-60 Team, The JFT-2M Group (2004) High-beta steady-state research and future directions on the Japan atomic energy research institute tokamak-60 upgrade and the Japan atomic energy research institute fusion torus-2 modified. Phys Plasmas 11:2532

    Google Scholar 

  • Jassby D (1981) The fusion-supported decentralized nuclear energy system. J Fusion Energy 1:59

    Article  Google Scholar 

  • Kang J, von Hippel FN (2001) U-232 and the proliferation resistance of U-233 in spent fuel. Sci Glob Secur 9:1–32

    Article  Google Scholar 

  • Kelly J, Rose R (1981) The tokamak hybrid reactor. Nucl Eng Design 63:395

    Article  Google Scholar 

  • Koide Y, The JT 60 Team (1997) Progress in confinement and stability with plasma shape and profile control for steady-state operation in the Japan atomic energy research institute tokamak-60 upgrade. Phys Plasmas 4:1623

    Google Scholar 

  • Kotschenreuther M, Valanju PM, Mahajan SM, Schneider EA (2009) Fusion-fission transmutation scheme-efficient destruction of nuclear waste. Fusion Eng Des 84:83–88

    Article  Google Scholar 

  • Kusama Y, The JT-60 Team (1999) Recent progress in high performance and steady-state experiments on the Japan atomic energy research institute tokamak-60 upgrade with W-shaped divertor. Phys Plasmas 6:1935

    Google Scholar 

  • Lamarsh JR, Baratta AJ (2001) Introduction to nuclear engineering, 3rd edn. Prentice Hall, Upper Saddle River, NJ, p 227

    Google Scholar 

  • Le Brun C, Mathieu L, Heuer D, Nuttin A (2005) Impact of the MSBR concept technology on long-lived radio-toxicity and proliferation resistance. Note LPSC 05-81, technical meeting on fissile material management strategies for sustainable nuclear energy, Vienna, Austria

    Google Scholar 

  • Lee JD (1976) Blanket design for the mirror fusion/fission hybrid reactor, Fig. 10 burn results, p 27. In: Proceedings of US-USSR symposium on fusion-fission reactors, Lawrence Livermore Laboratory, Livermore, California LLL-ERDA, CONF-760733, 13–16 July 1976, p 272

    Google Scholar 

  • Lee JD (1978) Private communications

    Google Scholar 

  • Lee JD (1979). Private communications

    Google Scholar 

  • Lee JD, Moir R (1981) Fission suppressed blankets for fissile fuel breeding fusion reactors. J Fusion Energy 1:299

    Article  Google Scholar 

  • Lee JD et al (1982) Feasibility study of a fission-suppressed tandem-mirror hybrid reactor. Lawrence Livermore National Laboratory, Livermore, CA, UCID-19327, p IV-1–IV-98

    Google Scholar 

  • Lessor DL (1975) Neutron and alpha particle energy spectrum and angular distribution effects from beam-plasma D-T. Pacific Northwest Laboratories (USA) Rep. BNWL-B-409

    Google Scholar 

  • Lidsky LM (1969) Fission-fusion symbiosis: general considerations and a specific example. In: Proceedings of british nuclear energy society conference on nuclear fusion reactors Culham Lab, Culham Laboratory Rep. (CLM-NFE), pp 41–53

    Google Scholar 

  • Lidsky LM (1975) Review paper fission-fusion systems: hybrid, symbiotic and Augean. Nucl Fusion 15:151–173

    Article  Google Scholar 

  • Lidsky LM (1982) End product economics and fusion research program priorities. J Fusion Energy 2:269

    Article  Google Scholar 

  • Loarte A et al (2004) Characterization of pedestal parameters and ELM energy losses in JET and predictions for ITER. Phys Plasmas 11:2668

    Article  Google Scholar 

  • Manheimer W (1999) Back to the future, the historical, scientific, naval and environmental case for fission fusion. Fusion Tech 36:1

    Google Scholar 

  • Manheimer W (2003) An alternate development path for magnetic fusion. J Fusion Energy 20(4):131

    Article  Google Scholar 

  • Manheimer W (2005) The fusion hybrid as a key to sustainable development. J Fusion Energy 23(4):223–235

    Article  Google Scholar 

  • Manheimer W (2006) Can fusion and fission breeding help civilization survive? J Fusion Energy 25:121

    Article  Google Scholar 

  • Manheimer W (2009) Hybrid fusion: the only viable development path for tokamaks? J Fusion Energy 28:60

    Article  Google Scholar 

  • Maniscalco J et al (1984) The fusion breeder-an early application of nuclear fusion. Fusion Tech 6:584

    Google Scholar 

  • Mills RG (ed) (1974) A fusion power plant. Princeton Plasma Physics Laboratory Rep. MATT-1050

    Google Scholar 

  • Moir RW (1981) The fusion-fission fuel factory. In: Teller E (ed) Fusion, vol 1, Part B, Chap. 15. Academic Press, NY

    Google Scholar 

  • Moir RW (1982) The fusion breeder. J Fusion Energy 2:351

    Article  Google Scholar 

  • Moir RW et al (1975) Progress on the conceptual design of a mirror hybrid fusion/fission reactor. Lawrence Livermore Laboratory Report UCRL-51797:45

    Google Scholar 

  • Moir RW et al (1984a) Helium-cooled molten salt fusion breeder. Lawrence Livermore National Laboratory, Livermore, CA, UCID-20153

    Google Scholar 

  • Moir RW et al (1984b) Feasibility study of a fission-suppressed tokamak fusion breeder. Lawrence Livermore National Laboratory, Livermore, CA, UCID-20154

    Google Scholar 

  • Moir RW et al (1985) Design of a helium-cooled molten salt fusion breeder. Fusion Technol 8:465–473

    Google Scholar 

  • Moir RW (1994) Direct energy conversion beam dump for a 1.6 MeV neutral beam for the international thermonuclear experimental reactor (ITER). Fusion Technol 15:129

    Google Scholar 

  • Moir RW, Hagmann CA, Shaw HR (2009a) Pu from weapons burning in a molten salt version of LIFE. Lawrence Livermore National Laboratory report LLNL-TR-418362

    Google Scholar 

  • Moir RW, Shaw HF, Caro A, Kaufman L, Latkowski JF, Powers J, Turchi PEA (2009b) Molten salt fuel version of laser inertial fusion fission energy (LIFE). Fusion Sci Technol 56:632–640

    Google Scholar 

  • Moir RW (2012) Fission-suppressed fusion, thorium cycle breeder, and nonproliferation. Trans Fusion Sci Technol 61:243.

    Google Scholar 

  • Moses EI et al (2009a) A sustainable nuclear fuel cycle based on laser inertial fusion energy. Fusion Sci Technol 56:547

    Google Scholar 

  • Moses EI et al (2009b) A sustainable nuclear fuel cycle based on laser inertial fusion energy. Fusion Sci Technol 56:548–565

    Google Scholar 

  • Najmabadi F, The ARIES Team (1997) Overview of the ARIES-RS reversed-shear tokamak power plant study. Fusion Eng Design 38:3

    Google Scholar 

  • Obenschain S et al (2006) Pathway to a lower cost high repetition rate ignition facility. Phys Plasmas 13:056320

    Article  Google Scholar 

  • Plechaty et al (1976) Tabular and graphical presentation of 175 neutron group constants derived from the LLL evaluated neutron data library (ENDL), vol 16. Lawrence Livermore Laboratory Rep. UCRL-50400

    Google Scholar 

  • Rebut PH (2006) From JET to reactor. Plasma Phys Controlled Fusion 48:B1

    Article  Google Scholar 

  • Rose R (1981) The case for the fusion hybrid. J Fusion Energy 1:185

    Article  Google Scholar 

  • Sakharov A (1990) Memoirs. Vintage Books, New York, p 142

    Google Scholar 

  • Saltmarsh MJ, Grimes WR, Santor RT (1979) An optimization of the fission-fusion hybrid concept. Oak Ridge National Laboratory Report ONL/PPA-79/3

    Google Scholar 

  • Shirai H, The JT-60 Team (1998) Recent experimental and analytic progress in the Japan atomic energy research institute tokamak-60 upgrade with W-shaped divertor configuration. Phys Plasmas 5:1712

    Google Scholar 

  • Simpson J (1987) Outlook for the fusion hybrid and tritium breeding fusion reactors. National Academy Press, Washington DC

    Google Scholar 

  • Stacey WM et al (2008) A TRU-Zr metal-fuel sodium-cooled fast subcritical advanced burner reactor. Nucl Technol 162:53

    Google Scholar 

  • Stacey WM (2009) Georgia tech studies of sub-critical advanced burner reactors with a D-T fusion tokamak neutron source for the transmutation of spent nuclear fuel. J Fusion Energy 28:328

    Article  Google Scholar 

  • Takenaga H, The JT-60 Team (2001) Improved particle control for high integrated plasma performance in Japan atomic energy research institute tokamak-60 upgrade. Phys Plasmas 8:2217

    Google Scholar 

  • Tenney F et al (1978) A systems study of tokamak fusion-fission reactors, PPPL-1450, p 544

    Google Scholar 

  • Thumm M et al (2008) Progress in the 10 MW 140 GHz ECH system for the stellarator W7-X. IEEE Trans Plasma Sci 36:341

    Article  Google Scholar 

  • Wu Y, Zheng S, Zhu X, Wang W, Wang H, Liu S, Bai Y, Chen H, Hu L, Chen M, Huang Q, Huang D, Zhang S, Li J, Chu D, Jiang J, Song Y (2006) Conceptual design of the fusion-driven subcritical system FDS-I. Fusion Eng Des 81:1305–1311

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph W. Moir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Moir, R.W., Manheimer, W. (2013). Fusion–Fission Hybrid Reactors. In: Dolan, T. (eds) Magnetic Fusion Technology. Lecture Notes in Energy, vol 19. Springer, London. https://doi.org/10.1007/978-1-4471-5556-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5556-0_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5555-3

  • Online ISBN: 978-1-4471-5556-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics