Skip to main content

Safety and Environment

  • Chapter
  • First Online:
Book cover Magnetic Fusion Technology

Part of the book series: Lecture Notes in Energy ((LNEN,volume 19))

Abstract

Tritium and tokamak dust are the main radioactive hazards of fusion reactors. Tritium emits a low-energy beta ray with a half-life of 12.3 years. It is hazardous if inhaled or ingested, but cannot penetrate the skin. The tritium inventory in the fuel system and walls should be well contained, minimized, and closely monitored, to keep the source term low in case of an accident. Neutron absorption will make reactor internal components radioactive, so their radioactivities will be minimized by design, with a goal of clearance or recycling most materials after a cooling period of 50–100 years. If many superconducting cables and coils are used in industry and in fusion reactors, shortages of materials such as He and Nb may occur. The ITER safety team is analyzing dozens of potential accident scenarios to prevent them or to mitigate their consequences, so that public safety will be assured without the need for an evacuation plan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badger B et al (1976) UWMAK-III, a noncircular tokamak power plant design. Electric Power Research Institute Report ER-368

    Google Scholar 

  • Badger B et al (1979) NUWMAK, a tokamak reactor design study. University of Wisconsin Report UWFDM-330

    Google Scholar 

  • Baldwin MJ, Schmid K, Doerner RP, Wiltner A, Seraydarian R, Linsmeier Ch (2005) Composition and hydrogen isotope retention analysis of co-deposited C/Be layers. J Nucl Mater 337–339:590–594

    Google Scholar 

  • Baskes MI (1980) A calculation of the surface recombination rate constant for hydrogen isotopes on metals. J Nucl Mater 92:318–324

    Article  Google Scholar 

  • Botts TE, Powell JR (1978) Waste management considerations for fusion power reactors. Nucl Technol 37:129–137

    Google Scholar 

  • Bradshaw AM, Hamacher T, Fischer U (2011) Is nuclear fusion a sustainable energy form? Fusion Eng Des 86:2770–2773

    Article  Google Scholar 

  • Bradshaw AM, Hamacher T (2012) Nuclear fusion and the helium supply problem. In: 27th symposium on fusion technology, Liege, Belgium, 24–28 Sept 2012

    Google Scholar 

  • Cadwallader LC, Longhurst GR (1999) FLIBE Use in fusion reactors: an initial safety assessment. INEEL/EXT-99-00331. Idaho National Laboratory, Mar 1999

    Google Scholar 

  • Cecchi JL (1979) Tritium permeation and wall loading in the TFTR vacuum vessel. J Vac Sci Technol 16:58–70

    Article  Google Scholar 

  • Desecures M, El-Guebaly L (2012) Environmental aspects of W-based components employed in ITER, ARIES, and PPCS fusion designs. University of Wisconsin Report UWFDM 1411

    Google Scholar 

  • DOE (2009) Evaluation of Tritium removal and Mitigation technologies for wastewater treatment. US Department of Energy Report DOE/RL-2009-18, Revision 0

    Google Scholar 

  • Dolan TJ, Longhurst GR, Garcia-Otero E (1992) A vacuum disengager for tritium removal from HYLIFE-II reactor Flibe. Fusion Technol 21:1949–1954

    Google Scholar 

  • Federici G, Anderl RA, Andrew P, Brooks JN, Causey RA, Coad JP, Cowgill D, Doerner RP, Haasz AA, Janeschitz G, Jacob W, Longhurst GR, Nygren R, Peacock A, Pick MA, Philipps V, Roth J, Skinner CH, Wampler WR (1999) In-vessel tritium retention and removal in ITER. J Nucl Mater 266–269:14–29

    Article  Google Scholar 

  • Fraas AP (1975) Oak Ridge National Laboratory Report ORNL-TM-4999

    Google Scholar 

  • Holdren JP (1980) Fusion energy in context: its fitness for the long term. Science 200:168–200

    Article  Google Scholar 

  • Kulcinski GL (1974) Fusion power—an assessment of its potential impact in the USA. Energy Policy 2:104

    Article  Google Scholar 

  • Longhurst GR et al (1996) Development of fusion safety standards. Fusion Technol 29:627–631

    Google Scholar 

  • Najmabadi F, Abdou A, Bromberg L, Brown T, Chan V C, Chu MC, Dahlgren F, El-Guebaly L, Heitzenroeder P, Henderson D, St. John HE, Kessel CE, Lao LL, Longhurst R, Malang S, Mau TK, Merrill BJ, Miller RL, Mogahed E, Moore RL, Petrie T, Petti DA, Politzer P, Raffray AR, Steiner D, Sviatoslavsky I, Synder P, Syaebler GM, Turnbull AD, Tillack MS, Waganer LM, Wang X, West P, Wilson P (2006) The ARIES-AT advanced tokamak, advanced technology fusion power plant. Fusion Eng Des 80:3–23

    Google Scholar 

  • National Academy of Sciences (1973) Fusion power: an assessment of ultimate potential. Report WASH-1239

    Google Scholar 

  • Perkins WG (1973) Permeation and outgassing of vacuum materials. J Vac Sci Technol 10:543–556

    Article  Google Scholar 

  • Petti DA, Merrill BJ, Moore RL, Longhurst GR, El-Guebaly L, Mogaheb E, Henderson D, Wilson P, Abdou A (2006) ARIES-AT safety design and analysis. Fusion Eng Des 80:111–137

    Article  Google Scholar 

  • Pinna T (2008) General safety analysis approach and techniques. 2nd International Summer School on Fusion Technologies, Karlsruhe Institute of Technology, Germany, Sept 5 2008

    Google Scholar 

  • Ribeiro I, Damiani C, Tesini A, Kakudate S, Siuko M, Neri C (2011) The remote handling systems for ITER. Fusion Eng Des 86:471–477

    Article  Google Scholar 

  • Safety of Magnetic Fusion Facilities: Requirements (1996a) DOE-STD-6002-96. US Department of Energy, Washington, DC, May 1996

    Google Scholar 

  • Safety of Magnetic Fusion Facilities:Guidance (1996) DOE-STD-6003-96. US Department of Energy, Washington, DC, May

    Google Scholar 

  • Steiner D, Fraas AP (1972) Preliminary observations on the radiological implications of fusion power. Nucl Saf 13(5):353–362

    Google Scholar 

  • Supplementary Guidance and Design Experience for the Fusion Safety Standards DOE-STD-6002-96 and DOE-STD-6003-96, DOE-HDBK-6004-99 (1999) US Department of Energy, Washington, DC, Jan 1999

    Google Scholar 

  • Taylor N, Baker D, Barabash V, Ciattaglia S, Elbez-Uzan J, Girard J-P, Gordon C, Iseli M, Maubert H, Reyes S, Topilski L (2009) Preliminary safety analysis of ITER. Fusion Sci Technol 56:573

    Google Scholar 

  • Tubiana M, Feinendegen LE, Yang CC, Kaminski JM (2009) The linear No-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 251:13–22

    Article  Google Scholar 

  • USGS (2012) Mineral Commodity Summaries 2012, United States Geological Survey, accessed at http://minerals.usgs.gov/minerals/pubs/mcs/2012/mcs2012.pdf

  • Watson JS (1972) A summary of tritium handling problems in fusion reactors. Oak Ridge National Laboratory Report ORNL-TM-4022

    Google Scholar 

  • Willms S (2004) Tritium supply considerations. ITER Test Blanket Module Meeting, UCLA, Feb 23–25

    Google Scholar 

  • Willms S, Merrill B, Malang S, Wong C, Sze DK (2007) Tritium extraction from a DCLL blanket. Los Alamos National Laboratory Report LA-UR-05-1711

    Google Scholar 

  • Young JR (1976) Environmental analysis of fusion power to determine related R and D needs. Battelle Pacific Northwest Laboratories Report BNWL-2010, Figure 5

    Google Scholar 

  • Zarchy AS, Axtmann RC (1978) Limitations on tritium transport through fusion reactors. Nucl Technol 39:258–265

    Google Scholar 

  • Zucchetti M, Di Pace L, El-Guebaly L, Han JH, Kolbasov BN, Massaut V, Someya Y, Tobita K, Desecures M (2012) Recent advances in fusion radioactive material studies. In: 27th symposium on fusion technology, Liege, Belgium, 24–30 Sept 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Dolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Dolan, T.J., Cadwallader, L.C. (2013). Safety and Environment. In: Dolan, T. (eds) Magnetic Fusion Technology. Lecture Notes in Energy, vol 19. Springer, London. https://doi.org/10.1007/978-1-4471-5556-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5556-0_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5555-3

  • Online ISBN: 978-1-4471-5556-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics