Advertisement

Plasma Diagnostics

  • Thomas J. Dolan
  • Alan E. Costley
  • Jana Brotankova
Chapter
Part of the Lecture Notes in Energy book series (LNEN, volume 19)

Abstract

Diagnostic instruments are needed to provide measurements for machine protection (magnet systems, vacuum systems, heating and cooling systems, safety systems, etc.); for plasma control; and for plasma performance evaluation. Plasma diagnostic systems include electrostatic probes, magnetic probes, measurement of particles emitted from the plasma, spectroscopy of waves emitted by the plasma, probing the plasma with injected particle beams, and probing the plasma with waves, such as microwaves and laser beams. For ITER, the next major step in magnetic fusion, diagnostics must be hardened to survive in a hot, high-radiation environment, and designed to minimize neutron streaming through ducts. Many adverse effects must be mitigated, such as radiation-induced spurious signals, erosion of windows and mirrors, and deposition of films on them. This is new territory for diagnostics and many challenges have to be overcome.

Keywords

Runaway Electron Zeeman Splitting Plasma Potential Neutral Beam Radial Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adamek J, Stockel J, Hron M, Ryszawy J, Tichy M, Schrittwieser R, Ionita C, Balan P, Martines E, Van Oost G (2004), A novel approach to direct measurement of the plasma potential, Czechoslovak Journal of Physics, 3, vol. 54Google Scholar
  2. Adamek J, Stockel J, Duran I, Hron M, Panek R, Tichy M, Schrittwieser R, Ionita C, Balan P, Martines E, Van Oost G (2005) Comparative measurements of the plasma potential with the ball-pen and emissive probes on the CASTOR tokamak. Czechoslovak J Phys 55Google Scholar
  3. Adamek J, Kocan M, Panek R, Gunn JP, Martines E, Stockel J, Ionita C, Popa G, Costin C, Brotankova J, Schrittwieser R, Van Oost G (2008) Simultaneous measurements of ion temperature by segmented tunnel and Katsumata probe. Contrib Plasma Phys 48(5–7):395–399CrossRefGoogle Scholar
  4. Arshad SA, Cordey JG, McDonald DC, Farthing J, Joffrin E, Von Hellermann M, Roach CM, Svenssone J (2008) Chapter 11—Data Validation, Analysis, and Applications for Fusion Plasmas. Fusion Sci Technol 53:667Google Scholar
  5. Carolan PG, Piotrowicz VA (1983) The behaviour of impurities out of coronal equilibrium. Plasma Phys 25:1065–1086 (Figure 5(b))Google Scholar
  6. Costley AE et al (2001) ITER R&D: Auxiliary systems: plasma diagnostics. Fusion Eng Des 55:331Google Scholar
  7. Costley AE et al (2005) Technological challenges of ITER diagnostics. Fusion Eng Des 74:109Google Scholar
  8. Costley AE et al (2006) The design and implementation of diagnostics systems on ITER. 21st IAEA fusion energy conference, Chengdu, 16–21 OctGoogle Scholar
  9. Costley AE (2010) Towards diagnostics for a fusion reactor. IEEE Trans Plasma Sci 38:2934–2943CrossRefGoogle Scholar
  10. Costley AE, Johnson DW (eds) (2008) Plasma diagnostics for magnetic fusion research. Special edition of fusion science and technology 53(2):281–760Google Scholar
  11. De Michelis C, Mattioli M (1984) Spectroscopy and impurity behavior in fusion plasmas. Rep Prog Phys 47:1233CrossRefGoogle Scholar
  12. de la Luna E et al (2008) Recent results on the discrepancy between Te measurements in high-Te plasmas in JET. In: Proceedings of 15th joint workshop electron cyclotron emission and electron cyclotron resonance heating (EC-15), World Scientific Press, Yosemite, California, March 2008Google Scholar
  13. de la Luna E et al (2012) The effect of ELM pacing by vertical kicks on the access to stationary H-mode with H98 ~ 1 on JET. 24th IAEA Fusion energy conference, IAEA CN-197, San Diego, CA, 8–13 Oct 20112 (paper EX/6-1)Google Scholar
  14. Dejarnac R, Gunn JP, Stockel J, Adamek J, Brotankova J, Ionita C (2007) Study of ion sheath expansion and anisotropy of the electron parallel energy distribution in the CASTOR tokamak. Plasma Phys Controlled Fusion 49(2007):1791–1808CrossRefGoogle Scholar
  15. Dolan TJ (1982) Fusion research. Pergamon Press, Elmsford, NY, USAGoogle Scholar
  16. Donné AJH, Costley AE (2004) Key issues in diagnostics for burning plasma experiments. IEEE Trans Plasma Sci 32:177Google Scholar
  17. Donné AJH et al (2007) Chapter 7: Diagnostics. Nucl Fusion 47:S337CrossRefGoogle Scholar
  18. Donné AJH, Barth CJ, Weisen H (2008) Chapter 4: Laser-Aided Plasma Diagnostics. Fusion Sci Technol 53:397Google Scholar
  19. Duval B (2012) Real time ELM, NTM and Sawtooth Control on TCV. 24th IAEA fusion energy conference, IAEA CN-197, San Diego, CA, 8–13 Oct 2012 (paper EX/1-2)Google Scholar
  20. Dyabilin K, Hron M, Stockel J, Zacek F (2002) Rotating mach probe for ion flow measurements on the CASTOR tokamak. Contrib Plasma Phys 1:99–108CrossRefGoogle Scholar
  21. Equipe TFR (1978) Tokamak plasma diagnostics. Nuclear Fusion 18:647–730 (Figure 41)Google Scholar
  22. Eshelman CD, Tseng HK, Dolan TJ, Prelas MA (1991) Plasma diagnostic x-ray tomography system. Rev Sci Instrum 62:751–754CrossRefGoogle Scholar
  23. Eubank H, Goldston R J, Arunasalam V, et al (1979) “PLT neutral beam heating results”, International Atomic Energy Agency, Plasma Physics and Controlled Nuclear Fusion Research 1978. In: Proceedings of the seventh international conference on plasma physics and controlled nuclear fusion research, held by the International Atomic Energy Agency in Innsbruck, 23–30 Aug 1978, vol I, IAEA, Vienna (Paper IAEA-CN-37/C-3, pp 167–198, Fig. 9)Google Scholar
  24. Griem HR (1997) Principles of plasma spectroscopy. Cambridge University Press, EnglandCrossRefGoogle Scholar
  25. Gunn JP, Boucher C, Devynck P, Duran I, Dyabilin K, Horacek J, Hron M, Stockel J, Van Oost G, Van Goubergen H, Zacek F (2001) Edge flow measurements with Gundestrup probes. Phys Plasmas 8(5):1995–2001 (Part 2)Google Scholar
  26. Gunn JP, Panek R, Stockel J, Van Oost G, Van Rompuy T (2005) Simultaneous measurements of ion current, electron temperature and floating potential fluctuations with a tunnel probe. Czech J Phys 55(3):255–263CrossRefGoogle Scholar
  27. Hacquin S (2008) “Plasma diagnostics in fusion devices”, International Summer School on Fusion Technology. Karlsruhe Institute of Technology, Germany, 2–13 Sept 2008Google Scholar
  28. Hatae T, Nakatsuka M, Yoshida H (2004) Improvement of Thomson scattering diagnostics using stimulated-brillouin-scattering-based phase conjugate mirrors. J Plasma Fusion Res 80:870–882CrossRefGoogle Scholar
  29. Hillis DL, Fehling FT, Bell RE, Johnson DW, Zastrow K-D et al (2004) A high throughput spectrometer system for helium ash detection on JET. Rev Sci Ins 75:3449 (Fig. 1)Google Scholar
  30. Hopkins GR, Rawls JM (1979) Nuclear technology 43, 382, Fig. 1. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USAGoogle Scholar
  31. Huber A, McCormick K, Andrew P, Beaumont P, Dalley S, Fink J, Fuchs JC, Fullard K, Fundamenski W, Ingesson LC, Mast F, Jachmich S, Matthews GF, Mertens Ph, Philipps V, Pitts RA, Sanders S, Zeidner W (2007) Upgraded bolometer system on JET for improved radiation measurements. Fusion Eng Des 82:1327–1334Google Scholar
  32. Hutchinson IH (2002) Principles of plasma diagnostics, 2nd edn. Cambridge University Press, UKCrossRefGoogle Scholar
  33. Ingesson LC, Alper B, Peterson BJ, Vallet J-C (2008) Chapter 7: Tomography diagnostics: bolometry and soft-x-ray detection. Fusion Sci Technol 53:528Google Scholar
  34. Isler RC (1984) Impurities in Tokamaks. Nucl Fusion 24:1599CrossRefGoogle Scholar
  35. Jarvis ON (1994) Neutron measurement techniques for tokamak plasmas. Plasma Phys Controlled Fusion 36:209 (Table 4)Google Scholar
  36. Johnson DW, Costley AE (2008) Chapter 13: Challenges in fusion diagnostic development: a virtual tour of ITER. Fusion Sci Technol 53:751Google Scholar
  37. Katsumata I, Okazaki M (1967) Ion sensitive probe—a new diagnostic method for plasma in magnetic fields. Jpn J Appl Phys 6:123–124CrossRefGoogle Scholar
  38. Kikuchi M, Lackner K, Tran MQ (2012) Fusion physics. International atomic energy agency, Vienna, AustriaGoogle Scholar
  39. Kislyakov AI, Donné AJH, Krupnik LI, Medley SS, Petrov MP (2008) Chapter 8: Particle diagnostics, fusion science and technology 53, 577–603, Fig. 3a. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USAGoogle Scholar
  40. Krasilnikov AV, Sasao M, Kaschuck, Nishitani T, Batistoni P, Zaveryaev VS, Popovichev S, Iguchi T, Jarvis ON, Källne J, Fiore CL, Roquemore AL, Heidbrink WW, Fisher R, Gorini RG, Prosvirin DV, Tsutskikh AY, Donné AJH, Costley AE, Walker CI (2008) Status of ITER neutron diagnostic development. Nuclear Fusion 45:1503–1509 (Fig. 1)Google Scholar
  41. Lasnier CJ, Allen SL, Boedo JA, Groth M, Brooks NH, Mclean A, Labombard B, Skinner CH, Rudakov DL, West WP, Wong CPC (2008) Chapter 10: First wall and operational diagnostics. Fusion Science and Technology 53, 640. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USAGoogle Scholar
  42. Luhmann, Jr, NC, Bindslev H, Park H, Sánchez J, Taylor G, Yu CX (2008) Chapter 3: Microwave diagnostics. Fusion Science and Technology 5, 335–396. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USAGoogle Scholar
  43. Malaquias A, von Hellermann M, Tugarinov S, Lotte P, Hawkes N et al (2004) Active beam spectroscopy diagnostics for ITER: Present status (invited). Rev Sci Ins 75:3393 (Fig. 1)Google Scholar
  44. Medley SS, Roquemore AL (1998) Construction and operation of parallel electric and magnetic field spectrometers for mass energy resolved multi-ion charge exchange diagnostics on the tokamak fusion test reactor. Rev Sci Instrum 69:2651CrossRefGoogle Scholar
  45. Nunes I, Manso M, Serra F, Horton LD, Conway GD, Loarte A, ASDEX Upgrade and CFN Reflectometry Teams (2005) Density profile analysis during an ELM event in ASDEX Upgrade H-modes. Nuclear Fusion 45:1550 (Fig. 1)Google Scholar
  46. Orsitto FP, Gorini G, Sindoni E, Tardocci M (eds) (2008) Burning plasma diagnostics, American Institute of Physics Conference Proceedings 988, Melville, New YorkGoogle Scholar
  47. Park H, Mazzucato E, Munsat T, Domier CW, Johnson M et al (2004) Simultaneous microwave imaging system for density and temperature fluctuation measurements on TEXTOR (invited). Rev Sci Instrum 75:3787 (Fig. 3a)Google Scholar
  48. Peacock NJ (1996) Fusion Spectroscopy. Astrophys Space Sci 237:341–349Google Scholar
  49. Pégourié B, Köchl F, Nehme H, Polevoi AR (2009) Recent results on the fuelling and control of plasmas by pellet injection, application to ITER. Plasma Phys Controlled Fusion 51:1Google Scholar
  50. Reiter B, Pautasso G, Eich T, Fuchs JC, Giannone L, Dux R. Neuhauser J, Maraschek M, Igochine V, Herrmann A, Lunt T, the ASDEX Upgrade Team (2009) Application of AXUV diodes for broad-band plasma radiation studies in ASDEX Upgrade. 36th EPS Conference on Plasma Phys, Sofia, 29 June–3 July 2009 (ECA vol 33E, P-1.161)Google Scholar
  51. Rhodes TL, Peebles WA, Van Zeeland M, Mikkelsen D, Gilmore MA et al (2004) Comparison of broad spectrum turbulence measurements and gyrokinetic code predictions on the DIII-D Tokamak. In: Proceedings of the 20th IAEA fusion energy conference. Vilamoura, Portugal, 1–6 Nov 2004 (IAEA-CN-116/P6-23, Fig. 3)Google Scholar
  52. Sasao M, Nishitani T, Krasilnilov A, Popovichev S, Kiptily V, Kallne J (2008) Chapter 9: Fusion product diagnostics, fusion science and technology 53, 604 Copyright by the American Nuclear Society, LaGrange Park, Illinois, USAGoogle Scholar
  53. Schrittwieser R, Adamek J, Balan P, Hron M, Ionita C, Jakubka K, Kryska L, Martines E, Stockel J, Tichy M, Van Oost G (2002) Measurements with an emissive probe in the CASTOR tokamak. Plasma Phys Contr Fusion 44(5):567–578CrossRefGoogle Scholar
  54. Schrittwieser R, Ionitá C, Adámek J, Stöckel J, Brotánková J, Martines E, Popa G, Costin C, van de Peppel L, van Oost G (2006) Direct measurements of the plasma potential by katsumata-type probes. Czechoslovak J Phys 56(2):B145–B150 (Fig. 1)Google Scholar
  55. Sheehan JP, Hershkowitz N (2011) Emissive probes. Plasma Sources Sci Technol 20:063001 (pp 22)Google Scholar
  56. Sheffield J, Froula D, Glenzer SH, Luhmann NC (2011) Plasma scattering of electromagnetic radiation, second edition: theory and measurement techniques. Elsevier, AmsterdamGoogle Scholar
  57. Skinner CH, Roquemore AL, Bader A, Wampler WR et al (2004) Deposition diagnostics for next-step devices, Review of Scientific Instruments 75, 4213, Copyright 2004, American Institute of PhysicsGoogle Scholar
  58. Stockel J, Adamek J, Balan P, Bilyk O, Brotankova J, Dejarnac R, Devynck P, Duran I, Gunn JP, Hron M, Horacek J, Ionita C, Kocan M, Martines E, Panek R, Peleman P, Schrittwieser R, Van Oost G, Zacek F (2007) Advanced probes for edge plasma diagnostics on the CASTOR tokamak. J Phys Conf Ser 63:012001CrossRefGoogle Scholar
  59. Stott PE, Gorini G, Prandoni P, Sindoni E (eds) (1998) Diagnostics for experimental thermonuclear fusion reactors 2. Plenum Press, New York, ISBN 0-306-45835-7Google Scholar
  60. Strait EJ, Fredrickson ED, Moret J-M, Takechi M (2008) Chapter 2: Magnetic diagnostics. Fusion Sci Technol 53:304Google Scholar
  61. Stratton BC, Bitter M, Hill KW, Hillis DL, Hogan JT (2008) Chapter 5: Passive spectroscopic diagnostics for magnetically confined fusion plasmas, Fusion Sci Technol 53, 431, Figs. 5 and 26, and Table 1. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USAGoogle Scholar
  62. Terry JL, Lipschultz B, Pigarov AYu, Krasheninnikov SI, LaBombard B, Lumma D, Ohkawa H, Pappas D, Umansky M (1998) Volume recombination and opacity in Alcator C-mod plasmas. Phys Plasmas 5:1759CrossRefGoogle Scholar
  63. Texter S, Knowlton S, Porkolab M, Takase Y (1986) high energy x-ray measurements during lower hybrid current drive on the Alcator C Tokamak. Nucl Fusion 24:1279CrossRefGoogle Scholar
  64. Thomas DM, McKee GR, Burrell KH, Levinton F, Foley EL, Fishera R K(2008) Chapter 6: Active spectroscopy. Fusion Science and Technology 53, 487, Figs. 1, 2, and 9. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USAGoogle Scholar
  65. Van Oost G (2008) Advanced probe edge diagnostics for fusion devices. Trans Fusion Sci Technol 53:387Google Scholar
  66. Vayakis G, Walker C (2002) Magnetic diagnostics for ITER/BPX plasmas, presented at the HTPD, Madison, Wisconsin, July, Fig. 18. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USAGoogle Scholar
  67. Vayakis G, Hodgson ER, Voitsenya V, Walker CI (2008) Chapter 12: Generic diagnostic issues for a burning plasma experiment. Fusion Science and Technology 53, 699. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USAGoogle Scholar
  68. Vayakis G, Arshad S, Delhom D, Encheva A, Giacomin T, Jones L, Pate KM, Pérez-Lasala M, Portales M, Prieto D, Sartori F, Simrock S, Snipes KA, Udintsev VS, Watts C, Winter A, Zabeo L (2012) Development of the ITER magnetic diagnostic set and specification, Rev Sci Instrum 83, 10D712 (2012), Fig. 1. Reprinted with permission Review of Scientific Instruments, Copyright 2012, American Institute of PhysicsGoogle Scholar
  69. Voitsenya V et al (2001) Diagnostic first mirrors for burning plasma experiments. Rev Sci Instrum 72:475CrossRefGoogle Scholar
  70. Walker SE, Preszler AM, Millard WA (1986) Double scatter neutron time of flight spectrometer as a plasma diagnostic. Rev Sci Instrum 57:1740–1742 (Fig. 4)Google Scholar
  71. Wesson J (2011) Tokamaks, 4th edn. Oxford University Press, Oxford (Chap. 10)MATHGoogle Scholar
  72. Young KM (2002) Alpha particle measurements needed for burning plasma experiments, in Stott PE et al (eds) Advanced diagnostics for magnetic and Inertial Fusion, Kluwer Academic/Plenum, New YorkGoogle Scholar
  73. Young KM (2008) Chapter 1: Plasma measurements: an overview of requirements and status. Fusion Sci Technol 53:281CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Thomas J. Dolan
    • 1
  • Alan E. Costley
    • 2
  • Jana Brotankova
    • 3
  1. 1.NPRE DepartmentUniversity of IllinoisUrbanaUSA
  2. 2.Diagnostics in ITERHenley on ThamesUK
  3. 3.James Cook UniversityTownsvilleAustralia

Personalised recommendations