Skip to main content

Plasma Diagnostics

  • Chapter
  • First Online:
Magnetic Fusion Technology

Part of the book series: Lecture Notes in Energy ((LNEN,volume 19))

Abstract

Diagnostic instruments are needed to provide measurements for machine protection (magnet systems, vacuum systems, heating and cooling systems, safety systems, etc.); for plasma control; and for plasma performance evaluation. Plasma diagnostic systems include electrostatic probes, magnetic probes, measurement of particles emitted from the plasma, spectroscopy of waves emitted by the plasma, probing the plasma with injected particle beams, and probing the plasma with waves, such as microwaves and laser beams. For ITER, the next major step in magnetic fusion, diagnostics must be hardened to survive in a hot, high-radiation environment, and designed to minimize neutron streaming through ducts. Many adverse effects must be mitigated, such as radiation-induced spurious signals, erosion of windows and mirrors, and deposition of films on them. This is new territory for diagnostics and many challenges have to be overcome.

A. E. Costley (Retired), Former Head of Diagnostics in ITER

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamek J, Stockel J, Hron M, Ryszawy J, Tichy M, Schrittwieser R, Ionita C, Balan P, Martines E, Van Oost G (2004), A novel approach to direct measurement of the plasma potential, Czechoslovak Journal of Physics, 3, vol. 54

    Google Scholar 

  • Adamek J, Stockel J, Duran I, Hron M, Panek R, Tichy M, Schrittwieser R, Ionita C, Balan P, Martines E, Van Oost G (2005) Comparative measurements of the plasma potential with the ball-pen and emissive probes on the CASTOR tokamak. Czechoslovak J Phys 55

    Google Scholar 

  • Adamek J, Kocan M, Panek R, Gunn JP, Martines E, Stockel J, Ionita C, Popa G, Costin C, Brotankova J, Schrittwieser R, Van Oost G (2008) Simultaneous measurements of ion temperature by segmented tunnel and Katsumata probe. Contrib Plasma Phys 48(5–7):395–399

    Article  Google Scholar 

  • Arshad SA, Cordey JG, McDonald DC, Farthing J, Joffrin E, Von Hellermann M, Roach CM, Svenssone J (2008) Chapter 11—Data Validation, Analysis, and Applications for Fusion Plasmas. Fusion Sci Technol 53:667

    Google Scholar 

  • Carolan PG, Piotrowicz VA (1983) The behaviour of impurities out of coronal equilibrium. Plasma Phys 25:1065–1086 (Figure 5(b))

    Google Scholar 

  • Costley AE et al (2001) ITER R&D: Auxiliary systems: plasma diagnostics. Fusion Eng Des 55:331

    Google Scholar 

  • Costley AE et al (2005) Technological challenges of ITER diagnostics. Fusion Eng Des 74:109

    Google Scholar 

  • Costley AE et al (2006) The design and implementation of diagnostics systems on ITER. 21st IAEA fusion energy conference, Chengdu, 16–21 Oct

    Google Scholar 

  • Costley AE (2010) Towards diagnostics for a fusion reactor. IEEE Trans Plasma Sci 38:2934–2943

    Article  Google Scholar 

  • Costley AE, Johnson DW (eds) (2008) Plasma diagnostics for magnetic fusion research. Special edition of fusion science and technology 53(2):281–760

    Google Scholar 

  • De Michelis C, Mattioli M (1984) Spectroscopy and impurity behavior in fusion plasmas. Rep Prog Phys 47:1233

    Article  Google Scholar 

  • de la Luna E et al (2008) Recent results on the discrepancy between Te measurements in high-Te plasmas in JET. In: Proceedings of 15th joint workshop electron cyclotron emission and electron cyclotron resonance heating (EC-15), World Scientific Press, Yosemite, California, March 2008

    Google Scholar 

  • de la Luna E et al (2012) The effect of ELM pacing by vertical kicks on the access to stationary H-mode with H98 ~ 1 on JET. 24th IAEA Fusion energy conference, IAEA CN-197, San Diego, CA, 8–13 Oct 20112 (paper EX/6-1)

    Google Scholar 

  • Dejarnac R, Gunn JP, Stockel J, Adamek J, Brotankova J, Ionita C (2007) Study of ion sheath expansion and anisotropy of the electron parallel energy distribution in the CASTOR tokamak. Plasma Phys Controlled Fusion 49(2007):1791–1808

    Article  Google Scholar 

  • Dolan TJ (1982) Fusion research. Pergamon Press, Elmsford, NY, USA

    Google Scholar 

  • Donné AJH, Costley AE (2004) Key issues in diagnostics for burning plasma experiments. IEEE Trans Plasma Sci 32:177

    Google Scholar 

  • Donné AJH et al (2007) Chapter 7: Diagnostics. Nucl Fusion 47:S337

    Article  Google Scholar 

  • Donné AJH, Barth CJ, Weisen H (2008) Chapter 4: Laser-Aided Plasma Diagnostics. Fusion Sci Technol 53:397

    Google Scholar 

  • Duval B (2012) Real time ELM, NTM and Sawtooth Control on TCV. 24th IAEA fusion energy conference, IAEA CN-197, San Diego, CA, 8–13 Oct 2012 (paper EX/1-2)

    Google Scholar 

  • Dyabilin K, Hron M, Stockel J, Zacek F (2002) Rotating mach probe for ion flow measurements on the CASTOR tokamak. Contrib Plasma Phys 1:99–108

    Article  Google Scholar 

  • Equipe TFR (1978) Tokamak plasma diagnostics. Nuclear Fusion 18:647–730 (Figure 41)

    Google Scholar 

  • Eshelman CD, Tseng HK, Dolan TJ, Prelas MA (1991) Plasma diagnostic x-ray tomography system. Rev Sci Instrum 62:751–754

    Article  Google Scholar 

  • Eubank H, Goldston R J, Arunasalam V, et al (1979) “PLT neutral beam heating results”, International Atomic Energy Agency, Plasma Physics and Controlled Nuclear Fusion Research 1978. In: Proceedings of the seventh international conference on plasma physics and controlled nuclear fusion research, held by the International Atomic Energy Agency in Innsbruck, 23–30 Aug 1978, vol I, IAEA, Vienna (Paper IAEA-CN-37/C-3, pp 167–198, Fig. 9)

    Google Scholar 

  • Griem HR (1997) Principles of plasma spectroscopy. Cambridge University Press, England

    Book  Google Scholar 

  • Gunn JP, Boucher C, Devynck P, Duran I, Dyabilin K, Horacek J, Hron M, Stockel J, Van Oost G, Van Goubergen H, Zacek F (2001) Edge flow measurements with Gundestrup probes. Phys Plasmas 8(5):1995–2001 (Part 2)

    Google Scholar 

  • Gunn JP, Panek R, Stockel J, Van Oost G, Van Rompuy T (2005) Simultaneous measurements of ion current, electron temperature and floating potential fluctuations with a tunnel probe. Czech J Phys 55(3):255–263

    Article  Google Scholar 

  • Hacquin S (2008) “Plasma diagnostics in fusion devices”, International Summer School on Fusion Technology. Karlsruhe Institute of Technology, Germany, 2–13 Sept 2008

    Google Scholar 

  • Hatae T, Nakatsuka M, Yoshida H (2004) Improvement of Thomson scattering diagnostics using stimulated-brillouin-scattering-based phase conjugate mirrors. J Plasma Fusion Res 80:870–882

    Article  Google Scholar 

  • Hillis DL, Fehling FT, Bell RE, Johnson DW, Zastrow K-D et al (2004) A high throughput spectrometer system for helium ash detection on JET. Rev Sci Ins 75:3449 (Fig. 1)

    Google Scholar 

  • Hopkins GR, Rawls JM (1979) Nuclear technology 43, 382, Fig. 1. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USA

    Google Scholar 

  • Huber A, McCormick K, Andrew P, Beaumont P, Dalley S, Fink J, Fuchs JC, Fullard K, Fundamenski W, Ingesson LC, Mast F, Jachmich S, Matthews GF, Mertens Ph, Philipps V, Pitts RA, Sanders S, Zeidner W (2007) Upgraded bolometer system on JET for improved radiation measurements. Fusion Eng Des 82:1327–1334

    Google Scholar 

  • Hutchinson IH (2002) Principles of plasma diagnostics, 2nd edn. Cambridge University Press, UK

    Book  Google Scholar 

  • Ingesson LC, Alper B, Peterson BJ, Vallet J-C (2008) Chapter 7: Tomography diagnostics: bolometry and soft-x-ray detection. Fusion Sci Technol 53:528

    Google Scholar 

  • Isler RC (1984) Impurities in Tokamaks. Nucl Fusion 24:1599

    Article  Google Scholar 

  • Jarvis ON (1994) Neutron measurement techniques for tokamak plasmas. Plasma Phys Controlled Fusion 36:209 (Table 4)

    Google Scholar 

  • Johnson DW, Costley AE (2008) Chapter 13: Challenges in fusion diagnostic development: a virtual tour of ITER. Fusion Sci Technol 53:751

    Google Scholar 

  • Katsumata I, Okazaki M (1967) Ion sensitive probe—a new diagnostic method for plasma in magnetic fields. Jpn J Appl Phys 6:123–124

    Article  Google Scholar 

  • Kikuchi M, Lackner K, Tran MQ (2012) Fusion physics. International atomic energy agency, Vienna, Austria

    Google Scholar 

  • Kislyakov AI, Donné AJH, Krupnik LI, Medley SS, Petrov MP (2008) Chapter 8: Particle diagnostics, fusion science and technology 53, 577–603, Fig. 3a. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USA

    Google Scholar 

  • Krasilnikov AV, Sasao M, Kaschuck, Nishitani T, Batistoni P, Zaveryaev VS, Popovichev S, Iguchi T, Jarvis ON, Källne J, Fiore CL, Roquemore AL, Heidbrink WW, Fisher R, Gorini RG, Prosvirin DV, Tsutskikh AY, Donné AJH, Costley AE, Walker CI (2008) Status of ITER neutron diagnostic development. Nuclear Fusion 45:1503–1509 (Fig. 1)

    Google Scholar 

  • Lasnier CJ, Allen SL, Boedo JA, Groth M, Brooks NH, Mclean A, Labombard B, Skinner CH, Rudakov DL, West WP, Wong CPC (2008) Chapter 10: First wall and operational diagnostics. Fusion Science and Technology 53, 640. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USA

    Google Scholar 

  • Luhmann, Jr, NC, Bindslev H, Park H, Sánchez J, Taylor G, Yu CX (2008) Chapter 3: Microwave diagnostics. Fusion Science and Technology 5, 335–396. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USA

    Google Scholar 

  • Malaquias A, von Hellermann M, Tugarinov S, Lotte P, Hawkes N et al (2004) Active beam spectroscopy diagnostics for ITER: Present status (invited). Rev Sci Ins 75:3393 (Fig. 1)

    Google Scholar 

  • Medley SS, Roquemore AL (1998) Construction and operation of parallel electric and magnetic field spectrometers for mass energy resolved multi-ion charge exchange diagnostics on the tokamak fusion test reactor. Rev Sci Instrum 69:2651

    Article  Google Scholar 

  • Nunes I, Manso M, Serra F, Horton LD, Conway GD, Loarte A, ASDEX Upgrade and CFN Reflectometry Teams (2005) Density profile analysis during an ELM event in ASDEX Upgrade H-modes. Nuclear Fusion 45:1550 (Fig. 1)

    Google Scholar 

  • Orsitto FP, Gorini G, Sindoni E, Tardocci M (eds) (2008) Burning plasma diagnostics, American Institute of Physics Conference Proceedings 988, Melville, New York

    Google Scholar 

  • Park H, Mazzucato E, Munsat T, Domier CW, Johnson M et al (2004) Simultaneous microwave imaging system for density and temperature fluctuation measurements on TEXTOR (invited). Rev Sci Instrum 75:3787 (Fig. 3a)

    Google Scholar 

  • Peacock NJ (1996) Fusion Spectroscopy. Astrophys Space Sci 237:341–349

    Google Scholar 

  • Pégourié B, Köchl F, Nehme H, Polevoi AR (2009) Recent results on the fuelling and control of plasmas by pellet injection, application to ITER. Plasma Phys Controlled Fusion 51:1

    Google Scholar 

  • Reiter B, Pautasso G, Eich T, Fuchs JC, Giannone L, Dux R. Neuhauser J, Maraschek M, Igochine V, Herrmann A, Lunt T, the ASDEX Upgrade Team (2009) Application of AXUV diodes for broad-band plasma radiation studies in ASDEX Upgrade. 36th EPS Conference on Plasma Phys, Sofia, 29 June–3 July 2009 (ECA vol 33E, P-1.161)

    Google Scholar 

  • Rhodes TL, Peebles WA, Van Zeeland M, Mikkelsen D, Gilmore MA et al (2004) Comparison of broad spectrum turbulence measurements and gyrokinetic code predictions on the DIII-D Tokamak. In: Proceedings of the 20th IAEA fusion energy conference. Vilamoura, Portugal, 1–6 Nov 2004 (IAEA-CN-116/P6-23, Fig. 3)

    Google Scholar 

  • Sasao M, Nishitani T, Krasilnilov A, Popovichev S, Kiptily V, Kallne J (2008) Chapter 9: Fusion product diagnostics, fusion science and technology 53, 604 Copyright by the American Nuclear Society, LaGrange Park, Illinois, USA

    Google Scholar 

  • Schrittwieser R, Adamek J, Balan P, Hron M, Ionita C, Jakubka K, Kryska L, Martines E, Stockel J, Tichy M, Van Oost G (2002) Measurements with an emissive probe in the CASTOR tokamak. Plasma Phys Contr Fusion 44(5):567–578

    Article  Google Scholar 

  • Schrittwieser R, Ionitá C, Adámek J, Stöckel J, Brotánková J, Martines E, Popa G, Costin C, van de Peppel L, van Oost G (2006) Direct measurements of the plasma potential by katsumata-type probes. Czechoslovak J Phys 56(2):B145–B150 (Fig. 1)

    Google Scholar 

  • Sheehan JP, Hershkowitz N (2011) Emissive probes. Plasma Sources Sci Technol 20:063001 (pp 22)

    Google Scholar 

  • Sheffield J, Froula D, Glenzer SH, Luhmann NC (2011) Plasma scattering of electromagnetic radiation, second edition: theory and measurement techniques. Elsevier, Amsterdam

    Google Scholar 

  • Skinner CH, Roquemore AL, Bader A, Wampler WR et al (2004) Deposition diagnostics for next-step devices, Review of Scientific Instruments 75, 4213, Copyright 2004, American Institute of Physics

    Google Scholar 

  • Stockel J, Adamek J, Balan P, Bilyk O, Brotankova J, Dejarnac R, Devynck P, Duran I, Gunn JP, Hron M, Horacek J, Ionita C, Kocan M, Martines E, Panek R, Peleman P, Schrittwieser R, Van Oost G, Zacek F (2007) Advanced probes for edge plasma diagnostics on the CASTOR tokamak. J Phys Conf Ser 63:012001

    Article  Google Scholar 

  • Stott PE, Gorini G, Prandoni P, Sindoni E (eds) (1998) Diagnostics for experimental thermonuclear fusion reactors 2. Plenum Press, New York, ISBN 0-306-45835-7

    Google Scholar 

  • Strait EJ, Fredrickson ED, Moret J-M, Takechi M (2008) Chapter 2: Magnetic diagnostics. Fusion Sci Technol 53:304

    Google Scholar 

  • Stratton BC, Bitter M, Hill KW, Hillis DL, Hogan JT (2008) Chapter 5: Passive spectroscopic diagnostics for magnetically confined fusion plasmas, Fusion Sci Technol 53, 431, Figs. 5 and 26, and Table 1. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USA

    Google Scholar 

  • Terry JL, Lipschultz B, Pigarov AYu, Krasheninnikov SI, LaBombard B, Lumma D, Ohkawa H, Pappas D, Umansky M (1998) Volume recombination and opacity in Alcator C-mod plasmas. Phys Plasmas 5:1759

    Article  Google Scholar 

  • Texter S, Knowlton S, Porkolab M, Takase Y (1986) high energy x-ray measurements during lower hybrid current drive on the Alcator C Tokamak. Nucl Fusion 24:1279

    Article  Google Scholar 

  • Thomas DM, McKee GR, Burrell KH, Levinton F, Foley EL, Fishera R K(2008) Chapter 6: Active spectroscopy. Fusion Science and Technology 53, 487, Figs. 1, 2, and 9. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USA

    Google Scholar 

  • Van Oost G (2008) Advanced probe edge diagnostics for fusion devices. Trans Fusion Sci Technol 53:387

    Google Scholar 

  • Vayakis G, Walker C (2002) Magnetic diagnostics for ITER/BPX plasmas, presented at the HTPD, Madison, Wisconsin, July, Fig. 18. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USA

    Google Scholar 

  • Vayakis G, Hodgson ER, Voitsenya V, Walker CI (2008) Chapter 12: Generic diagnostic issues for a burning plasma experiment. Fusion Science and Technology 53, 699. Copyright by the American Nuclear Society, LaGrange Park, Illinois, USA

    Google Scholar 

  • Vayakis G, Arshad S, Delhom D, Encheva A, Giacomin T, Jones L, Pate KM, Pérez-Lasala M, Portales M, Prieto D, Sartori F, Simrock S, Snipes KA, Udintsev VS, Watts C, Winter A, Zabeo L (2012) Development of the ITER magnetic diagnostic set and specification, Rev Sci Instrum 83, 10D712 (2012), Fig. 1. Reprinted with permission Review of Scientific Instruments, Copyright 2012, American Institute of Physics

    Google Scholar 

  • Voitsenya V et al (2001) Diagnostic first mirrors for burning plasma experiments. Rev Sci Instrum 72:475

    Article  Google Scholar 

  • Walker SE, Preszler AM, Millard WA (1986) Double scatter neutron time of flight spectrometer as a plasma diagnostic. Rev Sci Instrum 57:1740–1742 (Fig. 4)

    Google Scholar 

  • Wesson J (2011) Tokamaks, 4th edn. Oxford University Press, Oxford (Chap. 10)

    MATH  Google Scholar 

  • Young KM (2002) Alpha particle measurements needed for burning plasma experiments, in Stott PE et al (eds) Advanced diagnostics for magnetic and Inertial Fusion, Kluwer Academic/Plenum, New York

    Google Scholar 

  • Young KM (2008) Chapter 1: Plasma measurements: an overview of requirements and status. Fusion Sci Technol 53:281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Dolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Dolan, T.J., Costley, A.E., Brotankova, J. (2013). Plasma Diagnostics. In: Dolan, T. (eds) Magnetic Fusion Technology. Lecture Notes in Energy, vol 19. Springer, London. https://doi.org/10.1007/978-1-4471-5556-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5556-0_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5555-3

  • Online ISBN: 978-1-4471-5556-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics