Skip to main content

Introduction

  • Chapter
  • First Online:
Magnetic Fusion Technology

Part of the book series: Lecture Notes in Energy ((LNEN,volume 19))

  • 2962 Accesses

Abstract

Nuclear fusion would have abundant, cheap fuel (deuterium and lithium), excellent safety, and environmental compatibility. A fusion reactor would need to heat the deuterium–tritium fuel to 10 keV (100 Million Kelvin) and confine it long enough for about 1 % of the fuel to “burn”. This can be done by using intense magnetic fields to confine the plasma electrons and ions and to provide thermal insulation between the hot plasma and the walls. Experimental “tokamaks” and “stellarators” are confining plasmas well on a small scale (plasma radius about 1 m), and a larger ITER experiment is under construction. A Demonstration Power Plant (DEMO) to generate electricity would be the next step after ITER. The final challenge will be to produce electricity that is economically competitive with other sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atzeni S, Meyer-Ter-Vehn J (2004) The physics of inertial fusion. Oxford Science Publications

    Google Scholar 

  • Bolt H (~2007) Materials for fusion, Sect. 2.9 of European White Book Fig. 2.17. http://www.mpg.de/pdf/europeanWhiteBook/wb_materials_068_113.pd

  • Braams CM, Stott PE (2002) Nuclear fusion: half a century of magnetic confinement. IOP Bristol, Philadelphia

    Book  Google Scholar 

  • Chapman BE et al (2010) Generation and confinement of hot ions and electrons in a reversed-field pinch plasma. Plasma Phys Controlled Fusion 52:124048 (14 pages)

    Google Scholar 

  • Chen FF (1984) Introduction to plasma physics and controlled fusion, Volume 1: Plasma physics, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  • Chen FF (2011) An indispensable truth, how fusion power can save the planet. Springer, New York

    Book  Google Scholar 

  • Dolan TJ (1982) Fusion research. Pergamon Press, New York

    Google Scholar 

  • Dolan TJ (1993) Fusion power economy of scale. Fusion Technol 24:97–111

    MathSciNet  Google Scholar 

  • Dolan TJ (2012) Nuclear fusion, encyclopedia of sustainability science and technology. Springer, New York

    Google Scholar 

  • EIA (2011) International Energy Outlook 2011, Report Number: DOE/EIA-0484, Energy Information Administration, US Department of Energy

    Google Scholar 

  • IAEA (1995) Energy from inertial fusion. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Freidberg J (2007) Plasma physics and fusion energy. Cambridge University Press, Cambridge

    Google Scholar 

  • Jarboe TR, Victor BS, Nelson BA, Hansen CJ, Akcay C, Ennis DA, Hicks NK, Hossack AC, Marklin GJ, Smith RJ (2012a) Imposed dynamo current drive. Nucl Fusion 52:083017 (9 pp)

    Google Scholar 

  • Jarboe TR, Sutherland DA, Akcay C, Golingo R, Hansen CJ, Hossack AC, Marklin GJ, Morgan K, Nelson BA, Raman R, Victor BS, You S (2012b) Facilities needed for the development of economical fusion power, http://www.iccworkshops.org/epr2013/index.php

  • Kikuchi M, Lackner K, Tran MQ (2012) Fusion physics. International Atomic Energy Agency, Vienna, Austria

    Google Scholar 

  • LaBerge M (2012) General fusion’s acoustic magnetized target fusion. In: 20th American Nuclear Society Topical meeting on the technology of fusion energy, Nashville, TN, USA, Aug 27–31

    Google Scholar 

  • Li XZ, Wei QM, Liu BA (2008) New simple formula for fusion cross sections of light nuclei. Nucl Fusion 48:125003 (5 pages)

    Google Scholar 

  • Lodge O (1924) Putting the atom to work. Sci Am (May), pp 306–307, 358–359

    Google Scholar 

  • Morisaki T et al (2007) Superdense core mode in the large helical device with an internal diffusion barrier. Phys Plasmas 14:056113

    Article  Google Scholar 

  • Moses EI et al (2009) A sustainable nuclear fuel cycle based on laser inertial fusion energy. Fusion Sci Technol 56:547

    Google Scholar 

  • Najmabadi F et al (2006) The ARIES-AT advanced tokamak, advanced technology fusion power plant. Fusion Eng Des 80:3–23

    Article  Google Scholar 

  • NAS (2012) Interim report-status of the study “An Assessment of the Prospects for Inertial Fusion Energy”, Committee on the Prospects for Inertial Confinement Fusion Energy Systems; National Research Council of the National Academies, National Academy Press

    Google Scholar 

  • Ongena J, Van Oost G (2012) Energy for future centuries. Fusion Sci Technol 61:3–16

    Google Scholar 

  • Rogner HH (2012) World Energy Demand and Supply, IAEA, Vienna, Austria. Accessed at http://www.iaea.org/nuclearenergy/nuclearknowledge/schools/NEM-school/2012/AbuDhabi/PDFs/day1/04_Rogner_World_Energy_D%26S.pdf

  • Sheffield J, Waganer LM (2001) A study of options for the deployment of large fusion power plants. Fusion Sci Technol 40:1–36

    Google Scholar 

  • Simonen T, Cohen T, Correll D, Fowler K, Post D, Berk H, Horton W, Hooper EB, Fisch N, Hassam A, Baldwin D, Pearlstein D, Logan G, Turner B, Moir R, Molvik A, Ryutov D, Ivanov AA, Kesner J, Cohen B, McLean H, Tamano T, Tang XZ, Imai T (2008) The axisymmetric tandem mirror: a magnetic mirror concept game changer—Magnet Mirror Status Study Group, Lawrence Livermore National Laboratory Report LLNL-TR-408176, Oct 24

    Google Scholar 

  • Taylor JB (1984) Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys Rev Lett 33:1139–l141

    Google Scholar 

  • Theobald W et al (2008) Initial experiments on the shock ignition inertial confinement fusion concept. Phys Plasmas 15:056306

    Article  Google Scholar 

  • Wood RD, Hill DN, McLean HS, Hooper EB, Hudson BF, Moller JM, Romero-Talamas CA (2009) Improved magnetic field generation efficiency and higher temperature spheromak plasmas. Nucl Fusion 49:025001 (4 pp)

    Google Scholar 

  • Woodruff S, Brown M, Hooper EB, Milroy R, Schaffer M (2010) Why compact tori for fusion. J Fusion Energy 29:447–453

    Article  Google Scholar 

  • Yokohama M et al (2008) Extension of the high temperature regime in the large helical device. Phys Plasmas 15:056111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Dolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Dolan, T.J., Parrish, A. (2013). Introduction. In: Dolan, T. (eds) Magnetic Fusion Technology. Lecture Notes in Energy, vol 19. Springer, London. https://doi.org/10.1007/978-1-4471-5556-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5556-0_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5555-3

  • Online ISBN: 978-1-4471-5556-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics