Advertisement

Life Cycle Based Evaluation and Interpretation of Technology Chains in Manufacturing

A Methodology for Industrial Use
  • F. Klocke
  • B. Döbbeler
  • M. Binder
  • R. Schlosser
  • D. Lung
Chapter
Part of the Springer Series in Advanced Manufacturing book series (SSAM)

Abstract

This chapter describes a methodology to gather, assess and interpret the ecological impact of technology chains within industrial manufacturing. The explained methodology leads to significant information about high consuming processes and important energy and material flows. Industrial companies cannot allocate the exact consumptions in the manufacturing processes. Especially costs and consumptions for media like compressed air or centrally provided lubricants are mostly distributed by means of the number of machines rather than by actual consumption figures. By utilising the presented methodology not only information about real consumptions, but furthermore ecological data can be generated for various purposes such as ecological product declarations and evaluation of alternative production chains. The methodology is exemplarily applied in two industrial case studies and results of these studies are shown in this chapter.

Keywords

Life Cycle Assessment Functional Unit Impact Category Global Warming Potential Life Cycle Inventory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. DIN EN ISO 14040 (2009) Environmental management—Life cycle assessment—Principles and frameworkGoogle Scholar
  2. DIN EN ISO 14044 (2010) Environmental management—Life cycle assessment—Requirements and guidelinesGoogle Scholar
  3. Finnveden G, Hauschild M, Ekvall T, Guinée J, Heijungs R, Hellweg S et al (2009) Recent developments in life cycle assessment. J Environ Manag 91:1–21CrossRefGoogle Scholar
  4. Goedkoop M (2000) The eco-indicator 99 LCIA methodology—an introduction. In: Eidgenössische technische Hochschule Zürich (ed) eco-indicator 99—eine schadensorientierte Bewertungsmethode. ZürichGoogle Scholar
  5. Guinée J (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. Int J LCA 7:311–313CrossRefGoogle Scholar
  6. Guinee J, Heijungs R (1993) A proposal for the classification of toxic substances within the framework of life cycle assessment of products. Chemosphere 26:1925–1944CrossRefGoogle Scholar
  7. Hauff V (1987) Unsere gemeinsame Zukunft: [der Brundtland-Bericht der] Weltkommission für Umwelt und Entwicklung. Eggenkamp, GrevenGoogle Scholar
  8. Huijbregts M, Hellweg S, Frischknecht R, Hendriks H, Hungerbühler K, Hendriks A (2010) Cumulative energy demand as predictor for the environmental burden of commodity production. Environ Sci Technol 44:2189–2196CrossRefGoogle Scholar
  9. Huijbregts M, Rombouts L, Hellweg S, Frischknecht R, Hendriks A, van de Meent D et al (2006) Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environ Sci Technol 40:641–648CrossRefGoogle Scholar
  10. ICMC (ed) (2010) Sustainable production for resource efficiency and ecomobility International chemnitz manufacturing colloquium (ICMC)Google Scholar
  11. Kellens K, Dewulf W, Overcash M, Hauschild M, Duflou J (2012) Methodology for systematic analysis and improvement of manufacturing unit process life-cycle inventory (UPLCI)-CO2PE! initiative (cooperative effort on process emissions in manufacturing). Part 1: Methodology description. Int J LCA 17:69–78CrossRefGoogle Scholar
  12. Klocke F, Schuh G, Döbbeler B, Pitsch M, Schlosser R, Lung D et al (2012) Simplified life cycle analysis of a forming tool in the automotive industry. In: Dornfeld D, Linke B (eds) Leveraging technology for a sustainable world. Proceedings of the 19th CIRP conference on life cycle engineering, University of California at Berkeley, Berkeley, USA. Springer, HeidelbergGoogle Scholar
  13. Laurent A, Olsen S, Hauschild M (2010) Carbon footprint as environmental performance indicator for the manufacturing industry. CIRP Ann 59:37–40CrossRefGoogle Scholar
  14. Reich-Weiser C, Vijayaraghavan A, Dornfeld D (2010) Appropriate use of green manufacturing frameworks. In: CIRP (ed) 17th CIRP International conference on life cycle engineering (LCE 2010), Anhui, ChinaGoogle Scholar
  15. Schiefer E, Hora M, Hermenau U (2009) Entwicklung umweltgerechter produkte. Integration von EcoDesign in die betriebliche praxis. Hessen-Umwelttech News 2:15–16Google Scholar
  16. Schlosser R, Klocke F, Döbbeler B, Riemer B, Hameyer K, Herold T et al (2011) Assessment of energy and resource consumption of processes and process chains within the automotive sector. In: Hesselbach J (ed): Globalized solutions for sustainability in manufacturing. Proceedings of the 18th CIRP International conference on life cycle engineering, Technische Universität Braunschweig, Braunschweig, Germany. Springer, HeidelbergGoogle Scholar
  17. VDI 4600: Cumulative energy demand—Terms, definitions, methods of calculationGoogle Scholar
  18. Wiedmann T, Minx J (2007) A definition of ‘Carbon Footprint’. In: Pertsova C (ed) Ecological economics research trends. Nova Science Publishers, Hauppauge Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • F. Klocke
    • 1
  • B. Döbbeler
    • 1
  • M. Binder
    • 1
  • R. Schlosser
    • 1
  • D. Lung
    • 1
  1. 1.Laboratory of Machine Tools and Production Engineering (WZL) of RWTHAachen UniversityAachenGermany

Personalised recommendations