Applications of Biochips Fabricated by Femtosecond Lasers

  • Koji SugiokaEmail author
  • Ya Cheng
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


The ability of femtosecond laser processing to simultaneously fabricate three-dimensional microfluidic, micro-optical, microelectronic, and micromechanic components inside glass microchips provides great advantages over conventional fabrication techniques for fabricating various biochips. This chapter introduces applications of biochips fabricated by femtosecond laser processing to biosensing based on surface-enhanced Raman scattering spectroscopy, efficient mixing of fluids, single cell detection, manipulation and sorting of cells, concentration analysis of liquid samples, and detection and elucidation of the functions of microorganisms and bacteria.


Femtosecond Laser Liquid Sample Optical Waveguide Microfluidic Channel Carbonic Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Marcinkevičius A, Juodkazis S, Watanabe M et al (2001) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26:277–279CrossRefGoogle Scholar
  2. 2.
    Masuda M, Sugioka K, Cheng Y et al (2003) 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl Phys A 76:857–860CrossRefGoogle Scholar
  3. 3.
    Li Y, Itoh K, Watanabe W et al (2001) Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt Lett 26:1912–1914CrossRefGoogle Scholar
  4. 4.
    Liao Y, Ju Y, Zhang L et al (2010) Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Opt Lett 35:3225–3227CrossRefGoogle Scholar
  5. 5.
    Davis KM, Miura K, Sugimoto N et al (1996) Writing waveguides in glass with a femtosecond laser. Opt Lett 21:1729–1731CrossRefGoogle Scholar
  6. 6.
    Cheng Y, Sugioka K, Midorikawa K et al (2003) Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. Opt Lett 28:1144–1146CrossRefGoogle Scholar
  7. 7.
    Wang Z, Sugioka K, Midorikawa K (2007) Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 89:951–955CrossRefGoogle Scholar
  8. 8.
    Sugioka K, Hongo T, Takai H et al (2005) Selective metallization of internal walls of hollow structures inside glass using femtosecond laser. Appl Phys Lett 86:171910CrossRefGoogle Scholar
  9. 9.
    Hanada Y, Sugioka K, Midorikawa K (2008) Selective metallization of photostructurable glass by femtosecond laser direct writing for biochip application. Appl Phys A 90:603–607CrossRefGoogle Scholar
  10. 10.
    Xu J, Liao Y, Zeng HD et al (2007) Selective metallization on insulator surfaces with femtosecond laser pulses. Opt Express 15:12743–12748CrossRefGoogle Scholar
  11. 11.
    Masuda M, Sugioka K, Cheng Y et al (2004) Direct fabrication of freely movable microplate inside photosensitive glass by femtosecond laser for lab-on-chip application. Appl Phys A 78:1029–1032CrossRefGoogle Scholar
  12. 12.
    Kiyama S, Tomita T, Matsuo S et al (2009) Laser fabrication and manipulation of an optical rotator embedded inside a transparent solid material. J Laser Micro/Nanoeng 4:18–21CrossRefGoogle Scholar
  13. 13.
    Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589CrossRefGoogle Scholar
  14. 14.
    Osellame R, Hoekstra HJWM, Cerullo1 G et al (2011) Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photonics Rev 5:442–463Google Scholar
  15. 15.
    Wang Z, Sugioka K, Midorikawa K (2008) Fabrication of integrated microchip for optical sensing by femtosecond laser direct writing of foturan glass. Appl Phys A 93:225–229CrossRefGoogle Scholar
  16. 16.
    Liao Y, Xu J, Cheng Y et al (2008) Electro-optic integration of embedded electrodes andwaveguides in LiNbO3 using a femtosecond laser. Opt Lett 33:2281–2283CrossRefGoogle Scholar
  17. 17.
    Cheng Y, Sugioka K, Midorikawa K et al (2004) Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt Lett 29:2007–2009CrossRefGoogle Scholar
  18. 18.
    Crespi A, Gu Y, Ngamsom B et al (2010) Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 10:1167–1173CrossRefGoogle Scholar
  19. 19.
    Zhou Z, Xu J, He F et al (2010) Surface-enhanced Raman scattering substrate fabricated by femtosecond laser induced co-deposition of silver nanoparticles and fluorescent molecules. Jpn J Appl Phys 49:022703CrossRefGoogle Scholar
  20. 20.
    Liao Y, Song J, Li E et al (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12:746–749CrossRefGoogle Scholar
  21. 21.
    Kim M, Hwang DJ, Jeon H et al (2009) Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. Lab Chip 9:311–318CrossRefGoogle Scholar
  22. 22.
    Bellini N, Vishnubhatla KC, Bragheri F et al (2010) Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt Express 18:4679–4688CrossRefGoogle Scholar
  23. 23.
    Choudhury D, Ramsay WT, Kiss R et al (2012) A 3D mammalian cell separator biochip. Lab Chip 12:948–953CrossRefGoogle Scholar
  24. 24.
    Applegate RW Jr, Squier J, Vestad T et al (2006) Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab Chip 6:422–426CrossRefGoogle Scholar
  25. 25.
    Brahheri F, Minzioni P, Vazquez RM et al (2012) Optofluidic integrated cell sorter fabricated by femtosecond lasers. Lab Chip 12:3779–3784CrossRefGoogle Scholar
  26. 26.
    Bragheri F, Ferrara L, Bellini N et al (2010) Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser. J Biophotonics 3:234–243CrossRefGoogle Scholar
  27. 27.
    Maselli V, Grenier JR, Ho S et al (2009) Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel. Opt Express 17:11719–11729CrossRefGoogle Scholar
  28. 28.
    Hanada Y, Sugioka K, S-Ishikawa et al (2011) 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. Lab Chip 11:2109–2115Google Scholar
  29. 29.
    Hanada Y, Sugioka K, Midorikawa K (2012) Highly sensitive optofluidic chips for biochemical liquid assay fabricated by 3D femtosecond laser micromachining followed by polymer coating. Lab Chip 12:3639–3688CrossRefGoogle Scholar
  30. 30.
    Hanada Y, Sugioka K, Kawano H et al (2008) Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass. Biomed Microdevices 10:403–410CrossRefGoogle Scholar
  31. 31.
    Schaap A, Bellouard Y, Rohrlack T (2011) Biomed. Optofluidic lab-on-a-chip for rapid algae population screening. Opt Express 2:658–664CrossRefGoogle Scholar
  32. 32.
    Schaap A, Rohrlack T, Bellouard Y (2012) Optical classification of algae species with a glass lab-on-a-chip. Lab Chip 12:1527–1532CrossRefGoogle Scholar
  33. 33.
    Schaap A, Rohrlack T, Bellouard Y (2012) Lab on a chip technologies for algae detection: a review. J Biophotonics 5:8–9CrossRefGoogle Scholar
  34. 34.
    Lan X, Han Y, Wei T et al (2009) Surface-enhanced Raman-scattering fiber probe fabricated by femtosecond laser. Opt Lett 34:2285–2287CrossRefGoogle Scholar
  35. 35.
    Han Y, Lan X, Wei T et al (2009) Surface enhanced Raman scattering silica substrate fast fabrication by femtosecond laser pulses. Appl Phys A 97:721–724CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Wiggins S, Ottin JM (2004) Foundations of chaotic mixing. Philos Trans R Soc A 362:937–970CrossRefzbMATHGoogle Scholar
  38. 38.
    Carrière P (2007) On a three-dimensional implementation of the baker’s transformation. Phys Fluids 19:118110CrossRefGoogle Scholar
  39. 39.
    Ju Y, Liao Y, Zhang L et al (2012) Fabrication of large-volume microfluidic chamber embedded in glass using three-dimensional femtosecond laser micromachining. Microfluid Nanofluid 11:111–117CrossRefGoogle Scholar
  40. 40.
    Lincoln B, Schinkinger S, Travis K et al (2007) Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications. Biomed Microdevices 9:703–710CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Laser Technology LaboratoryRIKENSaitamaJapan
  2. 2.State Key Laboratory of High Field Laser PhysicsShanghai Institute of Optics and Fine Mechanics, Chinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations