Integration of Microcomponents

  • Koji SugiokaEmail author
  • Ya Cheng
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Various microcomponents, including microelectrodes and micro-optic and microfluidic components, can be fabricated in transparent materials by femtosecond laser direct writing. This chapter describes in detail techniques for integrating different types of microcomponents on a single substrate for constructing highly functional microfluidic, photonic, and optofluidic systems and devices. Several examples are described, including integration of microlenses and waveguides for beam collimation and focusing, integration of a micro-optical ring cavity and a microfluidic chamber for creating 3D microfluidic dye lasers, integration of microelectrodes and waveguide-based Mach–Zehnder interferometer in a lithium niobate (LiNbO3) crystal for constructing an optical modulator, and integration of micro-optic and microfluidic components in glass for optofluidic applications.


Femtosecond Laser Optical Waveguide Microfluidic Channel Microfluidic System Electroless Plating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589CrossRefGoogle Scholar
  2. 2.
    Osellame R, Hoekstra HJWM, Cerullo1 G et al (2011) Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photonics Rev 5:442–463Google Scholar
  3. 3.
    Schaap A, Rohrlack T, Bellouard Y (2012) Optical classification of algae species with a glass lab-on-a-chip. Lab Chip 12:1527–1532CrossRefGoogle Scholar
  4. 4.
    Xu J, Liao Y, Zeng HD et al (2007) Selective metallization on insulator surfaces with femtosecond laser pulses. Opt Express 15:12743–12748CrossRefGoogle Scholar
  5. 5.
    Hanada Y, Sugioka K, Midorikawa K (2008) Selective metallization of photostructurable glass by femtosecond laser direct writing for biochip application. Appl Phys A 90:603–607CrossRefGoogle Scholar
  6. 6.
    Camou S, Fujita H, Fujii T (2003) PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab Chip 3:40–45CrossRefGoogle Scholar
  7. 7.
    Wang Z, El-Ali J, Engelund M (2004) Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements. Lab Chip 4:372–377CrossRefGoogle Scholar
  8. 8.
    Wang Z, Sugioka K, Hanada Y et al (2007) Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 88:699–704CrossRefGoogle Scholar
  9. 9.
    Wang Z, Sugioka K, Hanada Y et al (2007) Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 89:951–955CrossRefGoogle Scholar
  10. 10.
    Cheng Y, Sugioka K, Midorikawa K (2006) Freestanding optical fibers fabricated in a glass chip by femtosecond laser micromachining for lab-on-a-chip application: erratum. Opt Express 14:11910CrossRefGoogle Scholar
  11. 11.
    Li LX, Nordin G, English J et al (2003) Small-area bends and beamsplitters for lowindex-contrast waveguides. Opt Express 11:282–290CrossRefGoogle Scholar
  12. 12.
    Cheng Y, Sugioka K, Midorikawa K et al (2004) Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt Lett 29:2007–2009CrossRefGoogle Scholar
  13. 13.
    Helbo B, Kristensen A, Menon A (2003) A micro-cavity fluidic dye laser. J Micromech Microeng 13:307–311CrossRefGoogle Scholar
  14. 14.
    Li ZY, Zhang ZY, Emery T et al (2006) Single mode optofluidic distributed feedback dye laser. Opt Express 14:696–701CrossRefGoogle Scholar
  15. 15.
    Cheng Y, Sugioka K, Midorikawa K (2005) Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for Lab-on-a-chip applications. Appl Surf Sci 248:172–176CrossRefGoogle Scholar
  16. 16.
    Moon HJ, Chough YT, An K (2000) Cylindrical microcavity laser based on the evanescent-wave-coupled gain. Phys Rev Lett 85:3161–3164CrossRefGoogle Scholar
  17. 17.
    Ramer OG (1982) Integrated optic electrooptic modulator electrode analysis. IEEE J Quant Electron 18:386–392CrossRefGoogle Scholar
  18. 18.
    Wooten EL, Kissa KM, Yi-Yan A et al (2000) A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quant 6:69–82CrossRefGoogle Scholar
  19. 19.
    Lu YQ, Wan ZL, Wang Q et al (2000) Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications. Appl Phys Lett 77:3719–3721CrossRefGoogle Scholar
  20. 20.
    Liao Y, Xu J, Cheng Y et al (2008) Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt Lett 33:2281–2283CrossRefGoogle Scholar
  21. 21.
    Burghoff J, Grebing C, Nolte S et al (2006) Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate. Appl Phys Lett 89(3):081108Google Scholar
  22. 22.
    Thomas J, Heinrich M, Burghoff J et al (2007) Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate. Appl Phys Lett 91(3):151108Google Scholar
  23. 23.
    Binh LN (2006) Lithium niobate optical modulators Devices and applications. J Cryst Growth 288:180–187CrossRefGoogle Scholar
  24. 24.
    Crespi A, Gu Y, Ngamsom B et al (2010) Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 10:1167–1173CrossRefGoogle Scholar
  25. 25.
    Applegate RW, Squier J, Vested T et al (2006) Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab Chip 6:422–426CrossRefGoogle Scholar
  26. 26.
    Bellouard Y, Said AA, Dugan M et al (2003) Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica. Proc Mater Res Soc Fall Meet Symp A (Mater Res Soc) 782:63–68Google Scholar
  27. 27.
    Maselli V, Grenier JR, Ho S et al (2009) Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel. Opt Express 17:11719–11729CrossRefGoogle Scholar
  28. 28.
    Vazquez RM, Osellame R, Nolli D et al (2009) Integration of femtosecond laser written optical waveguides in a lab-on-chip. Lab Chip 9:91–96CrossRefGoogle Scholar
  29. 29.
    Kim M, Hwang DJ, Jeon H et al (2009) Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. Lab Chip 9:311–318CrossRefGoogle Scholar
  30. 30.
    Schaap A, Bellouard Y, Rohrlack T et al (2011) Optofluidic lab-on-a-chip for rapid algae population screening. Biomed Opt Express 2:658–664CrossRefGoogle Scholar
  31. 31.
    Bragheri F, Ferrara L, Bellini N et al (2010) Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser. J Biophotonics 3:234–243CrossRefGoogle Scholar
  32. 32.
    Bellini N, Vishnubhatla KC, Bragheri F et al (2010) Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt Express 18:4679–4688CrossRefGoogle Scholar
  33. 33.
    Heideman RG, Lambeck PV (1999) Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. Sens Actuat B 61:100–127CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Laser Technology LaboratoryRIKENSaitamaJapan
  2. 2.State Key Laboratory of High Field Laser PhysicsShanghai Institute of Optics and Fine Mechanics, Chinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations