Selective Metallization of Glass

  • Koji SugiokaEmail author
  • Ya Cheng
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Selective metallization of glass can be used to incorporate microelectronic components in microfluidic systems making it an important technique for further enhancing the functions of biochips. Both femtosecond-laser-assisted electroless plating and femtosecond laser surface modification combined with electroless plating can be used to selectively deposit thin metal films only on laser irradiated regions, even on the internal walls of microfluidic structures. Additionally, two-photon-induced metal ion reduction of a liquid or polymer containing metal ions by femtosecond laser direct writing can be used to fabricate three-dimensional metal microstructures on glass substrates that have a high electrical conductivity. These metallization techniques can be utilized to manufacture functional microcomponents including microheaters for space-selective control of temperature in microfluidic systems and surface-enhanced Raman scattering platforms for highly sensitive analysis of biochemical samples.


Femtosecond Laser Microfluidic Channel Microfluidic System Electroless Plating Thin Metal Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Marcinkevičius A, Juodkazis S, Watanabe M et al (2001) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26:277–279CrossRefGoogle Scholar
  2. 2.
    Masuda M, Sugioka K, Cheng Y et al (2003) 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl Phys A 76:857–860CrossRefGoogle Scholar
  3. 3.
    Bellouard Y, Said A, Dugan M et al (2004) Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt Express 12:2120–2129CrossRefGoogle Scholar
  4. 4.
    Masuda M, Sugioka K, Cheng Y et al (2004) Direct fabrication of freely movable microplate inside photosensitive glass by femtosecond laser for lab-on-chip application. Appl Phys A 78:1029–1032CrossRefGoogle Scholar
  5. 5.
    Kiyama S, Tomita T, Matsuo S et al (2009) Laser fabrication and manipulation of an optical rotator embedded inside a transparent solid material. J Laser Micro Nanoengin 4:18–21CrossRefGoogle Scholar
  6. 6.
    Davis KM, Miura K, Sugimoto N et al (1996) Writing waveguides in glass with a femtosecond laser. Opt Lett 21:1729–1731CrossRefGoogle Scholar
  7. 7.
    Li ZL, Low DKY, Ho MK et al (2006) Fabrication of waveguides in Foturan by femtosecondlaser. J Laser Appl 18:320–324CrossRefGoogle Scholar
  8. 8.
    Cheng Y, Sugioka K, Midorikawa K et al (2003) Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. Opt Lett 28:1144–1146CrossRefGoogle Scholar
  9. 9.
    Cheng Y, Tsai HL, Sugioka K et al (2006) Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining. Appl Phys A 85:11–14CrossRefGoogle Scholar
  10. 10.
    Wang Z, Sugioka K, Midorikawa K (2007) Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 89:951–955CrossRefGoogle Scholar
  11. 11.
    Hanada Y, Sugioka K, Shihira-Ishikawa I et al (2011) 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. Lab Chip 11:2109–2115CrossRefGoogle Scholar
  12. 12.
    Hanada Y, Sugioka K, Midorikawa K (2008) Selective metallization of photostructurable glass by femtosecond laser direct writing for biochip application. Appl Phys A 90:603–607CrossRefGoogle Scholar
  13. 13.
    Zhou Z, Xu J, He F et al (2010) Surface-enhanced Raman scattering substrate fabricated by femtosecond laser induced co-deposition of silver nanoparticles and fluorescent molecules. Jpn J Appl Phys 49:022703CrossRefGoogle Scholar
  14. 14.
    Holland L (1963) Vacuum deposition of thin films. Chapman and Hall, LondonGoogle Scholar
  15. 15.
    Nakajima Y, Kusuyama K, Yamaguchi H et al (1992) Growth of single-crystal aluminium films on silicon substrates by DC magnetron sputtering. Jpn J Appl Phys 31:1860–1867CrossRefGoogle Scholar
  16. 16.
    Jain A, Chi KM, Kodas TT et al (1993) Chemical vapor deposition of copper from hexafluoroacetylacetonato copper(I)—vinyltrimethylsilane deposition rates, mechanism, selectivity, morphology, and resistivity as a function of temperature and pressure. J Electrochem Soc 140:1434–1439CrossRefGoogle Scholar
  17. 17.
    Sugioka K, Gu B, Holmes A (2007) The state of the art and future prospects for laser direct-write for industrial and commercial applications. MRS Bull 32:47–54CrossRefGoogle Scholar
  18. 18.
    Zhang J, Sugioka K, Midorikawa K (1999) Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser. Opt Lett 23:1486–1488CrossRefGoogle Scholar
  19. 19.
    Hanada Y, Sugioka K, Gomi Y et al (2004) Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials. Appl Phys A 79:1001–1003CrossRefGoogle Scholar
  20. 20.
    Adrian FJ, Bohandy J, Kim BF et al (1987) A study of the mechanism of metal-deposition by the laser-induced forward transfer. J Vac Sci Technol 5:1490–1494CrossRefGoogle Scholar
  21. 21.
    Esrom H, Zhang J, Kogelschatz U et al (1995) New approach of a laser-induced forward transfer for deposition of patterned thin metal films. Appl Surf Sci 86:202–207CrossRefGoogle Scholar
  22. 22.
    Glezer EN, Milosavljevic M, Huang L et al (1996) Three-dimensional optical storage inside transparent materials. Opt Lett 21:2023–2025CrossRefGoogle Scholar
  23. 23.
    Sugioka K, Hongo T, Takai H et al (2005) Selective metallization of internal walls of hollow structures inside glass using femtosecond laser. Appl Phys Lett 86:171910CrossRefGoogle Scholar
  24. 24.
    Xu J, Liao Y, Zeng HD et al (2007) Selective metallization on insulator surfaces with femtosecond laser pulses. Opt Express 15:12743–12748CrossRefGoogle Scholar
  25. 25.
    Xu J, Liao Y, Zeng HD et al (2008) Mechanism study of femtosecond laser induced selective metallization (FLISM) on glass surfaces. Opt Commun 281:3505–3509CrossRefGoogle Scholar
  26. 26.
    Baldacchini T, Pons AC, Pons J et al (2005) Multiphoton laser direct writing of twodimensional silver structures. Opt Express 13:1275–1280CrossRefGoogle Scholar
  27. 27.
    Tanaka T, Ishikawa A, Kawata S (2006) Two-photon-induced reduction of metal ions for fabricating three dimensional electricalally conductive metallic microstructure. Appl Phys Lett 88:081107CrossRefGoogle Scholar
  28. 28.
    Schaffer CB, García JF, Mazur E (2004) Bulk heating of transparent materials using a high-repetitionrate femtosecond laser. Appl Phys A 76:351–354CrossRefGoogle Scholar
  29. 29.
    Watanabe W, Onda S, Tamaki T et al (2006) Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses. Appl Phys Lett 89:021106CrossRefGoogle Scholar
  30. 30.
    Liao Y, Xu J, Cheng Y et al (2008) Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt Lett 33:2281–2283CrossRefGoogle Scholar
  31. 31.
    Maruo S, Saeki T (2008) Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix. Opt Express 16:1174–1179CrossRefGoogle Scholar
  32. 32.
    Cao YY, Takeyasu N, Tanaka T et al (2009) 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 5:1144–1148Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Laser Technology LaboratoryRIKENSaitamaJapan
  2. 2.State Key Laboratory of High Field Laser PhysicsShanghai Institute of Optics and Fine Mechanics, Chinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations