Advertisement

Fabrication of Micro-optical Components in Glass

  • Koji SugiokaEmail author
  • Ya Cheng
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Fabrication of optofluidic systems requires synergetic incorporation of micro-optical components in microfluidic networks. This chapter describes key techniques for fabricating optical waveguides and free-space micro-optical components in glass by femtosecond laser microprocessing, both of which are essential building blocks for optofluidic devices. It is straightforward to fabricate optical waveguides as femtosecond laser irradiation can change the refractive index of glass through multiphoton absorption in the focal volume. Free-space micro-optical components such as micromirrors and microlenses can be fabricated using femtosecond-laser-assisted wet chemical etching to form hollow structures with planar or curved surfaces in glass that serve as optical interfaces. Micro-attenuators can be embedded in glass with a high spatial resolution and controllable attenuations by synthesizing silver nanoparticles in photosensitive glass using femtosecond laser irradiation and subsequent heat treatment.

Keywords

Fuse Silica Femtosecond Laser Focal Spot Optical Waveguide Femtosecond Laser Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tung YC, Zhang M, Lin CT et al (2004) PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes. Sensor Actuat B 98:356–367CrossRefGoogle Scholar
  2. 2.
    Lien V, Vollmer F (2007) Microfluidic flow rate detection based on integrated optical fiber cantilever. Lab Chip 7:1352–1356CrossRefGoogle Scholar
  3. 3.
    Davis KM, Miura K, Sugimoto N et al (1996) Writing waveguides in glass with a femtosecond laser. Opt Lett 21:1729–1731CrossRefGoogle Scholar
  4. 4.
    Schaffer CB, Brodeur A, García JF et al (2001) Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt Lett 26:93–95CrossRefGoogle Scholar
  5. 5.
    Li ZL, Low DKY, Ho MK et al (2006) Fabrication of waveguides in Foturan by femtosecond laser. J Laser Appl 18:320–324CrossRefGoogle Scholar
  6. 6.
    Dong NN, Mendivil JM, Cantelar E et al (2011) Self-frequency-doubling of ultrafast laser inscribed neodymium doped yttrium aluminum borate waveguides. Appl Phys Lett 98: 81103(3)Google Scholar
  7. 7.
    Liao Y, Xu J, Cheng Y et al (2008) Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt Lett 33:2281–2283CrossRefGoogle Scholar
  8. 8.
    Sowa S, Watanabe W, Tamaki T et al (2006) Symmetric waveguides in poly (methyl methacrylate) fabricated by femtosecond laser pulses. Opt Express 14:291–297CrossRefGoogle Scholar
  9. 9.
    Reichman WJ, Krol DM, Shah L et al (2006) A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems. J Appl Phys 99:123112(5)Google Scholar
  10. 10.
    Ponader C, Schroeder J, Streltsov A (2008) Origin of the refractive-index increase in laser-written waveguides in glasses. J Appl Phys 103:063516(5)Google Scholar
  11. 11.
    Osellame R, Taccheo S, Marangoni M et al (2003) Femtosecond writing of active optical waveguides with astigmatically shaped beams. J Opt Soc Am B 20:1559–1567CrossRefGoogle Scholar
  12. 12.
    Ams M, Marshall G, Spence D et al (2005) Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt Express 13:5676–5681CrossRefGoogle Scholar
  13. 13.
    Cheng Y, Sugioka K, Midorikawa K et al (2003) Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. Opt Lett 28:55–57CrossRefGoogle Scholar
  14. 14.
    Thomson RR, Bockelt AS, Ramsay E et al (2008) Shaping ultrafast laser inscribed optical waveguides using a deformable mirror. Opt Express 16:12786–12793CrossRefGoogle Scholar
  15. 15.
    Salter PS, Jesacher A, Spring JB et al (2012) Adaptive slit beam shaping for direct laser written waveguides. Opt Lett 37:470–472CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Cheng G, Huo G et al (2009) The fabrication of circular cross-section waveguide in two dimensions with a dynamical slit. Laser Phys 19:2236–2241CrossRefGoogle Scholar
  17. 17.
    Wang Z, Sugioka K, Hanada Y et al (2007) Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 88:699–704CrossRefGoogle Scholar
  18. 18.
    He F, Xu H, Cheng Y et al (2010) Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt Lett 35:1106–1108CrossRefGoogle Scholar
  19. 19.
    Durfee CG, Greco M, Block E et al (2012) Intuitive analysis of space-time focusing with double-ABCD calculation. Opt Express 20:14244–14259CrossRefGoogle Scholar
  20. 20.
    Cheng Y, Sugioka K, Midorikawa K et al (2003) Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. Opt Lett 28:1144–1146CrossRefGoogle Scholar
  21. 21.
    Cheng Y, Tsai HL, Sugioka K et al (2006) Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining. Appl Phys A 85:11–14CrossRefGoogle Scholar
  22. 22.
    Wang Z, Sugioka K, Midorikawa K (2007) Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 89:951–955CrossRefGoogle Scholar
  23. 23.
    He F, Cheng Y, Qiao L et al (2010) Two photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining. Appl Phys Lett 96:041108(3)Google Scholar
  24. 24.
    Qiao LL, He F, Cheng Y et al (2011) A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining. Appl Phys A 102:179–183CrossRefGoogle Scholar
  25. 25.
    Guo R, Xiao SZ, Zhai XM et al (2006) Micro lens fabrication by means of femtosecond two photon photopolymerization. Opt Express 14:810–816CrossRefGoogle Scholar
  26. 26.
    Qiao L, He F, Wang C et al (2011) Fabrication of a micro-optical lens using femtosecond laser 3D micromachining for two-photon imaging of bio-tissues. Opt Commun 284:2988–2991CrossRefGoogle Scholar
  27. 27.
    Armani DK, Kippenberg TI, Spillane SM et al (2003) Ultra-high-Q toroid microcavity on a chip. Nature 421:925–928CrossRefGoogle Scholar
  28. 28.
    Armani AM, Kulkarni RP, Fraser SE et al (2007) Label-free, single-molecule detection with optical microcantilevers. Science 317:783–787CrossRefGoogle Scholar
  29. 29.
    Lin JT, Yu SJ, Ma YG et al (2012) On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing. Opt Express 20:10212–10217CrossRefGoogle Scholar
  30. 30.
    Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589CrossRefGoogle Scholar
  31. 31.
    Osellame R, Hoekstra HJWM, Cerullo G et al (2011) Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photon Rev 5:442–463CrossRefGoogle Scholar
  32. 32.
    Hanada Y, Sugioka K, Shihira-Ishikawa I et al (2011) 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. Lab Chip 11:2109–2115CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Laser Technology LaboratoryRIKENSaitamaJapan
  2. 2.State Key Laboratory of High Field Laser PhysicsShanghai Institute of Optics and Fine Mechanics, Chinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations