Advertisement

Fundamentals of Femtosecond Laser Processing

  • Koji SugiokaEmail author
  • Ya Cheng
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Femtosecond lasers have excellent characteristics for materials processing due to their ultrashort pulse widths and extremely high peak powers. When a femtosecond laser beam with a moderate pulse energy is focused into glass, multiphoton absorption or tunneling ionization is confined to a region near the focal point inside the glass. Femtosecond lasers can thus perform internal modification of glass. Internal modification is widely used to fabricate microfluidic structures and micro-optical components, which can be used to produce biomicrochips for biochemical analysis. This chapter reviews the fundamentals and characteristics of femtosecond laser processing. It also introduces state-of-the-art femtosecond laser processing.

Keywords

Femtosecond Laser Femtosecond Laser Pulse Transparent Material Femtosecond Laser Irradiation Multiphoton Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Srinivasan R, Sutcliffe E, Braren B (1987) Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses. Appl Phys Lett 51:1285–1287CrossRefGoogle Scholar
  2. 2.
    Küper S, Stuke M (1987) Femtosecond uv excimer laser ablation. Appl Phys B 44:99–204CrossRefGoogle Scholar
  3. 3.
    Küper S, Stuke M (1989) Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV exicimer laser pulses. Appl Phys Lett 54:4–6CrossRefGoogle Scholar
  4. 4.
    Küper S, Stuke M (1989) Ablation of uv-transparent materials with femtosecond UV excimer laser pulses. Microelectron Eng 9:475–480CrossRefGoogle Scholar
  5. 5.
    Momma C, Chichkov BN, Nolte S et al (1996) Short-pulse laser ablation of solid targets. Opt Commun 129:134–142CrossRefGoogle Scholar
  6. 6.
    Yanik MF, Cinar H, Cinar HN et al (2004) Neurosurgery: functional regeneration after laser axotomy. Nature 432:822–822CrossRefGoogle Scholar
  7. 7.
    Barsch N, Korber K, Ostendorf A et al (2003) Ablation and cutting of planar silicon devices using femtosecond laser pulses. Appl Phys A 77:237–242Google Scholar
  8. 8.
    Nakata Y, Okada T, Maeda M (2002) Fabrication of dot matrix, comb, and nanowire structures using laserablation by interfered femtosecond laser beams. Appl Phys Lett 81:4239–4241CrossRefGoogle Scholar
  9. 9.
    Reif J, Costache F, Henyk M et al (2002) Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Appl Surf Sci 197–198:891–895CrossRefGoogle Scholar
  10. 10.
    Wu Q, Ma Y, Fang R et al (2003) Femtosecond laser-induced periodic surface structure on diamond film. Appl Phys Lett 82:1703–1705CrossRefGoogle Scholar
  11. 11.
    Rudolph P, Kautek W (2004) Composition influence of non-oxidic ceramics on self-assembled nanostructures due to fs-laser irradiation. Thin Solid Films 453–454:537–541CrossRefGoogle Scholar
  12. 12.
    Miyaji G, Miyazaki K (2006) Ultrafast dynamics of periodic nanostructure forma-tion on diamondlikecarbon films irradiated with femtosecond laser pulses. Appl Phys Lett 89:191902CrossRefGoogle Scholar
  13. 13.
    Davis KM, Miura K, Sugimoto N et al (1996) Writing waveguides in glass with a femtosecond laser. Opt Lett 21:1729–1731CrossRefGoogle Scholar
  14. 14.
    Glezer EN, Milosavljevic M, Huang L et al (1996) Three-dimensional optical storage inside transparent materials. Opt Lett 21:2023–2025CrossRefGoogle Scholar
  15. 15.
    Watanabe W, Sowa S, Tamaki T et al (2006) Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser. Jpn J Appl Phys 45:L765–L767CrossRefGoogle Scholar
  16. 16.
    Hanada Y, Sugioka K, Midorikawa K (2010) UV waveguides light fabricated in fluoropolymer CYTOP by femtosecond laser direct writing. Opt Express 18:446–450CrossRefGoogle Scholar
  17. 17.
    Kawata S, Sun HB, Tanaka T et al (2001) Finer features for functional microdevices. Nature 412:697–698CrossRefGoogle Scholar
  18. 18.
    Fan WS, Storz R, Tom HWK et al (1992) Electron thermalization in gold. Phys Rev B 46:13592–13595CrossRefGoogle Scholar
  19. 19.
    Sun CK, Vallée F, Acioli LH et al (1994) Femtosecond-tunable measurement of electron thermalization in gold. Phys Rev B 50:15337–15348CrossRefGoogle Scholar
  20. 20.
    Wellershoff SS, Hohlfeld J, Güdde J et al (1999) The role of electron-phonon coupling in femtosecond laser damage of metals. Appl Phys A 69:S99–S107Google Scholar
  21. 21.
    Hohlfeld J, Wellershoff SS, Güdde J et al (2000) Electron and lattice dynamics following optical excitation of metals. Chem Phys 251:237–258CrossRefGoogle Scholar
  22. 22.
    Anisimov SI, Rethfeld B (1997) Theory of ultrashort laser pulse interaction with a metal. Proc SPIE 3093:192–203CrossRefGoogle Scholar
  23. 23.
    Corkum PB, Brunel F, Sherman NK et al (1988) Thermal response of metals to ultrashort pulse laser excitation. Phys Rev Lett 61:2886–2889CrossRefGoogle Scholar
  24. 24.
    Fujita M, Hashida M (2004) Applications of femtosecond lasers. Oyo Buturi 73:178–185 (in Japanese)Google Scholar
  25. 25.
    Keldysh LV (1965) Ionization in field of a strong electromagnetic wave. Sov Phys JETP 20:1307–1314MathSciNetGoogle Scholar
  26. 26.
    Mao SS, Quere F, Guizard S et al (2004) Dynamics of femtosecond laser interactions with dielectrics. Appl Phys A 79:1695–1709CrossRefGoogle Scholar
  27. 27.
    Chichkov BN, Momma C, Nolte S et al (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63:109–115CrossRefGoogle Scholar
  28. 28.
    Nakashima S, Sugioka K, Midorikawa K (2010) Enhancement of resolution and quality of nano-hole structure on GaN substrates using the second-harmonic beam of near-infrared femtosecond laser. Appl Phys A 101:475–481CrossRefGoogle Scholar
  29. 29.
    Nakashima S, Sugioka K, Ito T et al (2011) Fabrication of high-aspect-ratio nanohole arrays on GaN surface by using wet-chemical-assisted femtosecond laser ablation. J Laser Micro/Nanoeng 6:15–19CrossRefGoogle Scholar
  30. 30.
    Nakata Y, Okada T, Maeda M (2003) Nano-sized hollow bump array generated by single femtosecond laser pulse. Jpn J Appl Phys 42:L1452–L1454CrossRefGoogle Scholar
  31. 31.
    Nakata Y, Okada T, Maeda M (2004) Lithographical laser ablation using femto-second laser. Appl Phys A 79:1481–1483Google Scholar
  32. 32.
    Nakata Y, Miyanaga N, Okada T (2007) Effect of pulse width and fluence of femtosecond laser on the size of nanobump array. Appl Surf Sci 253:6555–6557CrossRefGoogle Scholar
  33. 33.
    Nakata Y, Tsuchida K, Miyanaga N et al (2009) Liquidly process in femtosecond laser processing. Appl Surf Sci 255:9761–9763CrossRefGoogle Scholar
  34. 34.
    Nakata Y, Hiromoto T, Miyanaga N (2009) Frozen water drops in the nanoworld. SPIE Newsroom. doi: 10.1117/2.1200906.1708 Google Scholar
  35. 35.
    Nakata Y, Momoo K, Hiromoto T et al (2011) Generation of superfine structure smaller than 10 nm by interfering femtosecond laser processing. Proc SPIE 7920:79200BCrossRefGoogle Scholar
  36. 36.
    Watanabe W, Asano T, Yamada K et al (2003) Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses. Opt Lett 28:2491–3493CrossRefGoogle Scholar
  37. 37.
    Sudrie L, Winick KA (2003) Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses. J Lightwave Technol 21:246–253CrossRefGoogle Scholar
  38. 38.
    Bricchi E, Mills JD, Kazamsky PG et al (2002) Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining. Opt Lett 27:2200–2202CrossRefGoogle Scholar
  39. 39.
    Valle GD, Taccheo S, Osellame R et al (2007) 1.5μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing. Opt Express 84:3190–3194CrossRefGoogle Scholar
  40. 40.
    Marcinkevicius A, Juodkazis S, Watanabe M et al (2001) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26:277–279CrossRefGoogle Scholar
  41. 41.
    Masuda M, Sugioka K, Cheng Y et al (2003) 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl Phys A 76:857–860CrossRefGoogle Scholar
  42. 42.
    Sugioka K, Cheng Y, Midorikawa K (2005) Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture. Appl Phys A 81:1–10CrossRefGoogle Scholar
  43. 43.
    Sugioka K, Hanada Y, Midorikawa K (2010) Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips. Laser Photon Rev 4:386–400CrossRefGoogle Scholar
  44. 44.
    Sugioka K, Cheng Y (2011) Integrated microchips for biological analysis fabricated by femtosecond laser direct writing. MRS Bull 36:1020–1027CrossRefGoogle Scholar
  45. 45.
    Sugioka K, Cheng Y (2011) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589CrossRefGoogle Scholar
  46. 46.
    Cumpston B, Ananthavel S, Barlow S et al (1999) Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398:51–54CrossRefGoogle Scholar
  47. 47.
    Sun HB, Matsuo S, Misawa H (1999) Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl Phys Lett 74:786–788CrossRefGoogle Scholar
  48. 48.
    Serbin J, Ovsianikov A, Chichkov B (2004) Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties. Opt Express 12:5221–5228CrossRefGoogle Scholar
  49. 49.
    Maruo S, Inoue H (2006) Optically driven micropump produced by three-dimensional two-photon microfabrication. Appl Phys Lett 89:144101CrossRefGoogle Scholar
  50. 50.
    Maruo S, Inoue H (2007) Optically driven viscous micropump using a rotating microdisk. Appl Phys Lett 91:084101CrossRefGoogle Scholar
  51. 51.
    Tian Y, Zhang YL, Ku JF et al (2010) High performance magnetically controllable microturbines. Lab Chip 10:2902–2905CrossRefGoogle Scholar
  52. 52.
    Wang J, He Y, Xia H et al (2010) Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab Chip 10:1993–1996CrossRefGoogle Scholar
  53. 53.
    Wu D, Chen QD, Niu LG et al (2009) Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices. Lab Chip 9:2391–2394CrossRefGoogle Scholar
  54. 54.
    Ovsianikov A, Malinauskas M, Schlie S et al (2011) Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater 7:967–974CrossRefGoogle Scholar
  55. 55.
    Farsari M, Chichkov B (2009) Two-photon fabrication. Nature Photon 3:450–452CrossRefGoogle Scholar
  56. 56.
    Tan DF, Li Y, Qi FG et al (2007) Reduction in feature size of two-photon polymerization using SCR500. Appl Phys Lett 90:071106CrossRefGoogle Scholar
  57. 57.
    Sakabe S, Hashida M, Tokita S et al (2009) Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse. Phys Rev B 79:033409CrossRefGoogle Scholar
  58. 58.
    Yasumaru N, Miyazaki K, Kiuchi J (2003) Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC. Appl Phys A 76:983–985CrossRefGoogle Scholar
  59. 59.
    Borowiec A, Hauge HK (2003) Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl Phys Lett 82:4462–4464CrossRefGoogle Scholar
  60. 60.
    Costache F, Henyk M, Reif J (2003) Surface patterning on insulators upon femtosecond laser ablation. Appl Surf Sci 208:486–491CrossRefGoogle Scholar
  61. 61.
    Her TH, Finlay RJ, Wu C et al (1998) Microstructuring of silicon with femtosecond laser pulses. Appl Phys Lett 73:1673–1675CrossRefGoogle Scholar
  62. 62.
    Baldacchini T, Carey JE, Zhou M et al (2006) Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser. Langmuir 22:4917–4919CrossRefGoogle Scholar
  63. 63.
    Carey JE, Crouch CH, Shen M et al (2005) Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Opt Lett 30:1773–1775CrossRefGoogle Scholar
  64. 64.
    Younkin R, Carey JE, Mazur E et al (2003) Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses. J Appl Phys 93:2626–2629CrossRefGoogle Scholar
  65. 65.
    Wang F, Chen C, He H et al (2011) Analysis of sunlight loss for femtosecond laser microstructed silicon and its solar cell efficiency. Appl Phys A 103:977–982CrossRefGoogle Scholar
  66. 66.
    Zorba V, Stratakis E, Barberoglou M et al (2008) Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv Mater 20:4049–4054Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Laser Technology LaboratoryRIKENSaitamaJapan
  2. 2.State Key Laboratory of High Field Laser PhysicsShanghai Institute of Optics and Fine Mechanics, Chinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations