Current Techniques for Fabricating Microfluidic and Optofluidic Devices

  • Koji SugiokaEmail author
  • Ya Cheng
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


A wide variety of techniques have been developed for fabricating microfluidic and optofluidic components and devices using polymer, glass, and silicon substrates. This chapter gives a brief overview of these techniques, which can be categorized into two classes: parallel processing techniques based on photolithography and serial processing techniques based on direct writing. Some representative examples of these two categories are discussed, including photolithography on glass, soft lithography on poly(dimethylsiloxane) (PDMS), and femtosecond-laser-induced two-photon polymerization. The main advantages and disadvantages of parallel and serial processing are compared. Polymers are currently the most commonly used material for microfluidic and optofluidic applications because fabrication in polymers is easy, rapid, and cost effective. In contrast, glass offers better chemical durability and optical performance. Femtosecond laser direct writing enables microfluidic and integrated optofluidic structures with complex three-dimensional geometries to be directly embedded in glass, eliminating the need to use multistep procedures such as stacking and bonding.


Photonic Crystal Femtosecond Laser Microfluidic Channel Microfluidic System Soft Lithography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Terry SC, Jerman JH, Angell JB (1979) A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans Electron Devices ED-26:1880–1886 Google Scholar
  2. 2.
    Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensor Actuat B1:244–248CrossRefGoogle Scholar
  3. 3.
    Harrison DJ, Fluri K, Seiler K et al (1993) Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261:895–897CrossRefGoogle Scholar
  4. 4.
    Grétillat MA, Paoletti F, Thiébaud P et al (1997) A new fabrication method for borosilicate glass capillary tubes with lateral inlets and outlets. Sensor Actuat A 60:219–222CrossRefGoogle Scholar
  5. 5.
    Dodge A, Fluri K, Verpoorte E et al (2001) Electrokinetically driven microfluidic chips with surface modified chambers for heterogeneous immunoassays. Anal Chem 73:3400–3409CrossRefGoogle Scholar
  6. 6.
    Verpoorte E, Rooij NFD (2003) Microfluidics meets MEMS. Proc IEEE 91:930–950CrossRefGoogle Scholar
  7. 7.
    Whitesides GM, Ostuni E, Takayama S et al (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373CrossRefGoogle Scholar
  8. 8.
    Zhao XM, Xia YN, Whitesides GM (1997) Soft lithographic methods for nano-fabrication. J Mater Chem 7:1069–1074CrossRefGoogle Scholar
  9. 9.
    Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184CrossRefGoogle Scholar
  10. 10.
    Unger MA, Chou HP, Thorsen T et al (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116CrossRefGoogle Scholar
  11. 11.
    Kim J, Xu XF (2003) Excimer laser fabrication of polymer microfluidic devices. J Laser Appl 15:255–260CrossRefGoogle Scholar
  12. 12.
    Becker H, Heim U (2000) Hot embossing as a method for the fabrication of polymer high aspect. Sensor Actuat A 83:130–135CrossRefGoogle Scholar
  13. 13.
    Choi JW, Kim S, Trichur R et al (2001) A plastic micro injection molding technique using replaceable mold-disks for disposable microfluidic systems and biochips. In: Proceedings of the 5th international conference on micro total analysis systems (μTAS), pp 411–412Google Scholar
  14. 14.
    Kan JA, Bettiol AA, Watt F (2003) Three-dimensional nanolithography using proton beam writing. Appl Phys Lett 83:1629–1631CrossRefGoogle Scholar
  15. 15.
    Mali P, Sarkar A, Lal R (2006) Facile fabrication of microfluidic systems using electron beam lithography. Lab Chip 6:310–315CrossRefGoogle Scholar
  16. 16.
    Marcinkevicius A, Juodkazis S, Watanabe M et al (2001) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26:277–279CrossRefGoogle Scholar
  17. 17.
    Masuda M, Sugioka K, Cheng Y et al (2003) 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl Phys A 76:857–860CrossRefGoogle Scholar
  18. 18.
    Bellouard Y, Said A, Dugan M et al (2004) Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt Express 12:2120–2129CrossRefGoogle Scholar
  19. 19.
    Osellame R, Hoekstra HJWM, Cerullo1 G et al (2011) Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photonics Rev 5:442–463Google Scholar
  20. 20.
    Schaap A, Rohrlack T, Bellouard Y (2012) Optical classification of algae species with a glass. Lab Chip 12:1527–1532CrossRefGoogle Scholar
  21. 21.
    Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589CrossRefGoogle Scholar
  22. 22.
    Bartholomeusz DA, Boutte RW, Andrade JD (2005) Xurography: rapid prototyping of microstructures using a cutting plotter. J Microelectromech Syst 14:1364–1374CrossRefGoogle Scholar
  23. 23.
    Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6(13):011301Google Scholar
  24. 24.
    Delft KM, Eijkel JCT, Mijatovic D et al (2007) Micromachined Fabry–Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics. Nano Lett 7:345–350CrossRefGoogle Scholar
  25. 25.
    Durand NFY, Renaud P (2009) Label-free determination of protein–surface interaction kinetics by ionic conductance inside a nanochannel. Lab Chip 9:319–324CrossRefGoogle Scholar
  26. 26.
    Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J Micromech Microeng 18(4):067001Google Scholar
  27. 27.
    Huang Z, Sanders JC, Dunsmor C et al (2001) A method for UV-bonding in the fabrication of glass electrophoretic microchips. Electrophoresis 22:3924–3929CrossRefGoogle Scholar
  28. 28.
    He B, Tait N, Regnier FE et al (1998) Fabrication of nanocolumns for liquid chromatography. Anal Chem 70:3790–3797CrossRefGoogle Scholar
  29. 29.
    Li X, Abe T, Esashi M et al (2001) Deep reactive ion etching of Pyrex glass using SF plasma. Sensor Actuat A 87:139–145CrossRefGoogle Scholar
  30. 30.
    Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111CrossRefGoogle Scholar
  31. 31.
    McDonald JC, Whitesides GM (2002) Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499CrossRefGoogle Scholar
  32. 32.
    Anderson JR, Chiu DT, Jackman RJ et al (2000) Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping. Anal Chem 72:3158–3164CrossRefGoogle Scholar
  33. 33.
    Liao Y, Song J, Li E et al (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12:746–749CrossRefGoogle Scholar
  34. 34.
    Camou S, Fujita H, Fujii T (2003) PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab Chip 3:40–45CrossRefGoogle Scholar
  35. 35.
    Wang Z, El-Ali J, Engelund M et al (2004) Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements. Lab Chip 4:372–377CrossRefGoogle Scholar
  36. 36.
    Erickson D, Rockwood T, Emery T et al (2006) Nanofluidic tuning of photonic crystal circuits. Opt Lett 31:59–61CrossRefGoogle Scholar
  37. 37.
    Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22:132–134CrossRefGoogle Scholar
  38. 38.
    Watanabe M, Sun HB, Juodkazis S et al (1998) Three-Dimensional Optical Data Storage in Vitreous Silica. Jpn J Appl Phys Part 2(37):L1527–L1530CrossRefGoogle Scholar
  39. 39.
    Kawata S, Sun HB, Tanaka T et al (2001) Finer features for functional micro-devices. Nature 412:697–698CrossRefGoogle Scholar
  40. 40.
    Wang J, He Y, Xia H et al (2010) Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab Chip 10:1993–1996CrossRefGoogle Scholar
  41. 41.
    Maruo S, Inoue H (2006) Optically driven micropump produced by three-dimensional two-photon microfabrication. Appl Phys Lett 89(3):144101Google Scholar
  42. 42.
    Maruo S, Takaura A, Saito Y (2009) Optically driven micropump with a twin spiral microrotor. Opt Express 17:18525–18532CrossRefGoogle Scholar
  43. 43.
    Wu J, Day D, Gu M (2008)A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal. Appl Phys Lett 92(3):071108Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Laser Technology LaboratoryRIKENSaitamaJapan
  2. 2.State Key Laboratory of High Field Laser PhysicsShanghai Institute of Optics and Fine Mechanics, Chinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations