Summary and Outlook

  • Koji SugiokaEmail author
  • Ya Cheng
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


The primary goal of this book is to comprehensively review state-of-the-art femtosecond laser three-dimensional (3D) micromachining techniques for microfluidic and optofluidic applications, including techniques for fabricating microfluidic components, optical waveguides, free-space micro-optical components, microelectrodes, and integrated optofluidic systems and devices. It also presents typical examples of applications of femtosecond-laser-fabricated microfluidic and optofluidic chips for chemical sensing and investigating biological species. Comparison with conventional lithography-based fabrication techniques reveals the uniqueness and versatility of femtosecond laser micromachining. In this chapter, we summarize the results and contributions presented in this book and overview the future outlook of this field.


Femtosecond Laser Microfluidic Chip Ultrafast Laser Femtosecond Laser Processing Raman Scattering Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Napoli M, Eijkel JCT, Pennathur S (2010) Nanofluidic technology for biomolecule applications: a critical review. Lab Chip 10:957–985CrossRefGoogle Scholar
  2. 2.
    Abgrall P, Nguyen NT (2008) Nanofluidic devices and their applications. Anal Chem 80:2326–2341CrossRefGoogle Scholar
  3. 3.
    Kazansky PG, Yang W, Bricchi E et al (2007) “Quill” writing with ultrashort light pulses in transparent materials. Appl Phys Lett 90:151120(3)Google Scholar
  4. 4.
    Vitek DN, Block E, Bellouard Y (2010) Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials. Opt Express 18:24673–24678CrossRefGoogle Scholar
  5. 5.
    Yang WJ, Kazansky PG, Svirko YP (2008) Non-reciprocal ultrafast laser writing. Nat Photonics 2:99–104CrossRefGoogle Scholar
  6. 6.
    He F, Xu H, Cheng Y et al (2010) Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt Lett 35:1106–1108CrossRefGoogle Scholar
  7. 7.
    Durfee CG, Greco M, Block E et al (2012) Intuitive analysis of space-time focusing with double-ABCD calculation. Opt Express 20:14244–14259CrossRefGoogle Scholar
  8. 8.
    Stoian R, Boyle M, Thoss A et al (2002) Laser ablation of dielectrics with temporally shaped femtosecond pulses. Appl Phys Lett 80:353–355CrossRefGoogle Scholar
  9. 9.
    Kiyama S, Matsuo S, Hashimoto S et al (2009) Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates. J Phys Chem C 113:11560–11566CrossRefGoogle Scholar
  10. 10.
    Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic Large Scale Integration. Science 298:580–584CrossRefGoogle Scholar
  11. 11.
    Liao Y, Ju Y, Zhang L et al (2010) Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Opt Lett 35:3225–3227CrossRefGoogle Scholar
  12. 12.
    Liao Y, Song J, Li E (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12:746–749CrossRefGoogle Scholar
  13. 13.
    Tünnermann A, Schreiber T, Limpert J et al (2010) Fiber lasers and amplifiers: an ultrafast performance evolution. Appl Opt 49:F71–F78CrossRefGoogle Scholar
  14. 14.
    Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386CrossRefGoogle Scholar
  15. 15.
    Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Photonics 1:106–114CrossRefGoogle Scholar
  16. 16.
    Erickson D, Sinton D, Psaltis D (2011) Optofluidics for energy applications. Nat Photonics 5:583–590CrossRefGoogle Scholar
  17. 17.
    Zhou Z, Xu J, Cheng Y (2008) Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing. Jpn J Appl Phys 47:189–192CrossRefGoogle Scholar
  18. 18.
    Sugioka K, Cheng Y, Midorikawa K (2007) “All-in-One” Chip Fabrication by 3D Femtosecond Laser Microprocessing for Biophotonics. J Phys: Conf Ser 59:533–538Google Scholar
  19. 19.
    Balslev S, Jorgensen AM, Bilenberg B (2006) Lab-on-a-chip with integrated optical transducers. Lab Chip 6:213–217CrossRefGoogle Scholar
  20. 20.
    Sugioka K, Cheng Y (2011) Integrated microchips for biological analysis fabricated by femtosecond laser direct writing. MRS Bull 36:1020–1027CrossRefGoogle Scholar
  21. 21.
    Osellame R, Hoekstra HJWM, Cerullo1 G et al (2011) Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photonics Rev 5:442–463Google Scholar
  22. 22.
    Schaap A, Rohrlack T, Bellouard Y (2012) Lab on a chip technologies for algae detection: a review. J Biophotonics 5:8–9CrossRefGoogle Scholar
  23. 23.
    Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Laser Technology LaboratoryRIKENSaitamaJapan
  2. 2.State Key Laboratory of High Field Laser PhysicsShanghai Institute of Optics and Fine Mechanics, Chinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations