• Koji SugiokaEmail author
  • Ya Cheng
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Femtosecond lasers have opened up new avenues in materials processing due to their unique characteristics of ultrashort pulse widths and extremely high peak intensities. One of the most important features of femtosecond laser processing is that a femtosecond laser beam can induce strong absorption in even transparent materials due to nonlinear multiphoton absorption. Multiphoton absorption enables both surface and internal three-dimensional modification and microfabrication of transparent materials such as glasses. This makes it possible to directly fabricate three-dimensional microfluidic, micromechanic, microelectronic, and micro-optical components in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser. Thus, femtosecond laser processing has several advantages over conventional methods such as traditional semiconductor processing or soft lithography for fabricating microfluidic, optofluidic, and lab-on-a-chip devices. Consequently, this topic is currently being intensively studied. This book gives a comprehensive review of the state of the art and future prospects of femtosecond laser processing for fabricating devices such as biomicrochips.


Femtosecond Laser Microfluidic Device Soft Lithography Multiphoton Absorption Volume Bragg Grating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Burns MA, Johnson BN, Brahmasandra AN et al (1998) An integrated nanoliter DNA analysis device. Science 282:484–487CrossRefGoogle Scholar
  2. 2.
    Dittrich PS, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78:3887–3907Google Scholar
  3. 3.
    Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184CrossRefGoogle Scholar
  4. 4.
    McDonald JC, Whitesides GM (2002) Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499CrossRefGoogle Scholar
  5. 5.
    Burg TP, Mirza AR, Milovic N et al (2006) Vacuum packaged suspended microchannel resonant mass sensor for biomolecular detection. IEEE/ASME J Microelectromech Syst 15:1466–1476CrossRefGoogle Scholar
  6. 6.
    Tokeshi M, Minagawa T, Uchiyama K et al (2002) Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network. Anal Chem 74:1565–1571CrossRefGoogle Scholar
  7. 7.
    Sugioka K, Hanada Y, Midorikawa K (2010) Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips. Laser & Photon Rev 4:386–400CrossRefGoogle Scholar
  8. 8.
    Sugioka K, Cheng Y (2011) Integrated microchips for biological analysis fabricated by femtosecond laser direct writing. MRS Bull 36:1020–1027CrossRefGoogle Scholar
  9. 9.
    Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589CrossRefGoogle Scholar
  10. 10.
    Küper S, Stuke M (1989) Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV excimer laser pulses. Appl Phys Lett 54:4–6CrossRefGoogle Scholar
  11. 11.
    Küper S, Stuke M (1989) Ablation of uv-transparent materials with femtosecond uv excimer laser pulses. Microelectron Eng 9:475–480CrossRefGoogle Scholar
  12. 12.
    Davis KM, Miura K, Sugimoto N et al (1996) Writing waveguides in glass with a femtosecond laser. Opt Lett 21:1729–1731CrossRefGoogle Scholar
  13. 13.
    Glezer EN, Milosavljevic M, Huang L et al (1996) Three-dimensional optical storage inside transparent materials. Opt Lett 21:2023–2025CrossRefGoogle Scholar
  14. 14.
    Marcinkevicius A, Juodkazis S, Watanabe M et al (2001) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26:277–279CrossRefGoogle Scholar
  15. 15.
    Masuda M, Sugioka K, Cheng Y et al (2003) 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl Phys A 76:857–860CrossRefGoogle Scholar
  16. 16.
    Cheng Y, Sugioka K, Midorikawa K (2005) Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture. Appl Phys A 81:1–10CrossRefGoogle Scholar
  17. 17.
    Masuda M, Sugioka K, Cheng Y et al (2004) Direct fabrication of freely movable microplate inside photosensitive glass by femtosecond laser for lab-on-chip application. Appl Phys A 78:1029–1032CrossRefGoogle Scholar
  18. 18.
    Matsuo S, Kiyama S, Shichijo Y et al (2008) Laser microfabrication and rotation of ship-in-a-bottle optical rotators. Appl Phys Lett 93:051107CrossRefGoogle Scholar
  19. 19.
    Cheng Y, Sugioka K, Midorikawa K et al (2003) Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. Opt Lett 28:1144–1146CrossRefGoogle Scholar
  20. 20.
    Cheng Y, Tsai HL, Sugioka K et al (2005) Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining. Appl Phys A 85:11–14CrossRefGoogle Scholar
  21. 21.
    Wang Z, Sugioka K, Midorikawa K (2007) Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 89:951–955CrossRefGoogle Scholar
  22. 22.
    Li Y, Itoh K, Watanabe W et al (2001) Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt Lett 26:1912–1914CrossRefGoogle Scholar
  23. 23.
    An R, Li Y, Dou Y et al (2005) Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses. Opt Express 13:1855–1859CrossRefGoogle Scholar
  24. 24.
    Liao Y, Ju Y, Zhang L et al (2010) Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Opt Lett 35:3225–3227CrossRefGoogle Scholar
  25. 25.
    Liao Y, Song J, Li E et al (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12:746–749CrossRefGoogle Scholar
  26. 26.
    Yamada K, Watanabe W, Toma T et al (2001) In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses. Opt Lett 26:19–21CrossRefGoogle Scholar
  27. 27.
    Schaffer CB, Brodeur A, Garcia JF et al (2001) Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt Lett 26:93–95CrossRefGoogle Scholar
  28. 28.
    Bricchi E, Mills JD, Kazamsky PG et al (2002) Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining. Opt Lett 27:2200–2202CrossRefGoogle Scholar
  29. 29.
    Kawamura K, Hirano M, Kamiya T et al (2002) Holographic writing of volume-type microgratings in silica glass by a single chirped laser pulse. Appl Phys Lett 81:1137–1139CrossRefGoogle Scholar
  30. 30.
    Watanabe W, Kuroda D, Itoh K et al (2002) Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses. Opt Express 10:978–983CrossRefGoogle Scholar
  31. 31.
    Gorelik M, Will S, Nolte A et al (2003) Transmission electron microscopy studies of femtosecond laser induced modifications in quartz. Appl Phys A 76:309–311CrossRefGoogle Scholar
  32. 32.
    Watanabe W, Asano T, Yamada K et al (2003) Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses. Opt Lett 28:2491–2493CrossRefGoogle Scholar
  33. 33.
    Sudrie L, Winick KA (2003) Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulsesJ. Lightwave Technol 21:246–253CrossRefGoogle Scholar
  34. 34.
    Cheng Y, Sugioka K, Midorikawa K (2004) Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt Lett 29:2007–2009CrossRefGoogle Scholar
  35. 35.
    Wang Z, Sugioka K, Hanada Y et al (2007) Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 88:699–704CrossRefGoogle Scholar
  36. 36.
    Wang Z, Sugioka K, Midorikawa K (2008) Fabrication of integrated microchip for optical sensing by femtosecond laser direct writing of Foturan glass. Appl Phys A 93:225–229CrossRefGoogle Scholar
  37. 37.
    Sugioka K, Hongo T, Takai H et al (2005) Selective metallization of internal walls of hollow structures inside glass using femtosecond laser. Appl Phys Lett 86:171910CrossRefGoogle Scholar
  38. 38.
    Xu J, Liao Y, Zeng H et al (2007) Selective metallization on insulator surfaces with femtosecond laser pulses. Opt Express 15:12743–12748CrossRefGoogle Scholar
  39. 39.
    Hanada Y, Sugioka K, Kawano H et al (2008) Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass. Biomed Microdevices 10:403–410CrossRefGoogle Scholar
  40. 40.
    Hanad a Y, Sugioka K, S-Ishikawa I et al (2008) 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. Lab Chip 11:2109–2115CrossRefGoogle Scholar
  41. 41.
    Crespi A, Gu Y, Ngamsom B et al (2010) Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 10:1167–1173CrossRefGoogle Scholar
  42. 42.
    Hanada Y, Sugioka K, Midorikawa K (2012) Highly sensitive optofluidic chips for biochemical liquid assay fabricated by 3D femtosecond laser micromachining followed by polymer coating. Lab Chip 12:3639–3688CrossRefGoogle Scholar
  43. 43.
    Kim M, Hwang DJ, Jeon H et al (2009) Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. Lab Chip 9:311–318CrossRefGoogle Scholar
  44. 44.
    Bragheri F, Ferrara L, Bellini N et al (2010) Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser. J Biophotonics 3:234–243CrossRefGoogle Scholar
  45. 45.
    Bellini N, Vishnubhatla KC, Bragheri F et al (2010) Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt Express 18:4679–4688CrossRefGoogle Scholar
  46. 46.
    Schaap A, Bellouard Y, Rohrlack T (2011) Optofluidic lab-on-a-chip for rapid algae population screening. Opt Express 2:658–664CrossRefGoogle Scholar
  47. 47.
    Schaap A, Rohrlack T, Bellouard Y (2012) Optical classification of algae species with a glass lab-on-a-chip. Lab Chip 12:1527–1532CrossRefGoogle Scholar
  48. 48.
    Schaap A, Rohrlack T, Bellouard Y (2012) Lab on a chip technologies for algae detection: a review. J Biophotonics 5:8–9CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Laser Technology LaboratoryRIKENSaitamaJapan
  2. 2.State Key Laboratory of High Field Laser PhysicsShanghai Institute of Optics and Fine Mechanics, Chinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations