Advertisement

A Theoretical Framework for Stigmergetic Reconstruction of Ancient Text

  • Eugene Ch′ngEmail author
  • Andrew Lewis
  • Rolf Erlend Gehlken
  • Sandra I. Woolley
Chapter
Part of the Springer Series on Cultural Computing book series (SSCC)

Abstract

Cuneiform script, an intellectual breakthrough 5,000 years ago, made recording information possible. Cuneiform is mankind’s first ever script, recorded and communicated using clay tablets for thousands of years across the entirety of the Ancient Near East. Remnants of the medium are now stored worldwide in many of collections and time required for the joining of the fragments using traditional methodologies means that the information recorded within these fragments will not be known in our lifetime. The research narrated in this chapter opens up a novel method for reconstructing the fragments, using nature-inspired approaches and new mobile digitising technology. It covers groundwork done to date for supporting a full-scale stigmergy reconstruction of cuneiform tablets and provides hypothetical scenarios within a theoretical framework for testing ‘in the wild’.

Keywords

Complexity Stigmergy Stigmergetic Stimuli-response Cooperative Collaboration Cuneiform Reconstruction Fragments 

Notes

Acknowledgments

The authors gratefully acknowledge the support of The Leverhulme Trust research grant number F000 94 BP, and the multidisciplinary support of the University of Birmingham’s Digital Humanities Hub.

References

  1. Anderson, S., & Levoy, M. (2002). Unwrapping and visualizing cuneiform tablets. IEEE Computer Graphics and Applications, 22(6), 82–88.CrossRefGoogle Scholar
  2. Arvanitis, T. N., Davis, T., Livingstone, A., Pinilla-Dutoit, J., & Woolley, S. I. (2002). The digital classification of ancient near eastern cuneiform data. British Archaeological Review, BAR International Series. 1075.Google Scholar
  3. Blau, I., and Caspi, A. (2009). What type of collaboration helps? Psychological ownership, perceived learning and outcome quality of collaboration. Proceedings of the Chais Conference on Instructional Technologies Research 2009: Learning in the Technological Era. pp. 48–55.Google Scholar
  4. Bonabeau, E., & Théraulaz, G. (2008). Swarm smarts. Special Editions, 18(1), 40–47.Google Scholar
  5. Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S., & Camazine, S. (1997). Self-organization in social insects. Trends in Ecology and Evolution, 12(5), 188–193.CrossRefGoogle Scholar
  6. Bruinsma, O. H. (1979). An analysis of building behaviour of the termite Macrotermes subhyalinus (Rambur). Wageningen: Landbouwhogeschool te Wageningen.Google Scholar
  7. Bulmer, L. (2002). A study of collaboration using jigsaw puzzles CVE’02: Proceedings of the 4th international conference on Collaborative virtual environments (pp. 157–158).Google Scholar
  8. Camazine, S. (1991). Self-organizing pattern formation on the combs of honey bee colonies. Behavioral Ecology and Sociobiology, 28(1), 61–76.CrossRefGoogle Scholar
  9. CDP (2004). The cuneiform digital palaeography project. Birmingham: The University of Birmingham. Retrieved March 12, 2013, from http://www.cdp.bham.ac.uk/
  10. Chandler J., and Fryer, J. (2011). Accuracy of AutoDesk 123D Catch. Retrieved March 12, 2013, from http://homepages.lboro.ac.uk/cvjhc/otherfiles/accuracy%20of%20123dcatch.htm
  11. Chen, T., Seidel, H. (2008). Modulated phase-shifting for 3D scanning. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Google Scholar
  12. Dekeyser, S. (2004). Towards a new approach to tightly coupled document collaboration. 9th Australasian Document Computing Symposium, Melbourne, Australia. Google Scholar
  13. Eseryel, D., Ganesan, R., & Edmonds, G. S. (2002). Review of computer-supported collaborative work systems. Education Technology and Society, 5(2), 1–8.Google Scholar
  14. Farella, E., Brunelli, D., Bonfigli, M.E., Benini, L., Gaiani, M., & Ricco, B. (2002). Using palmtop computers and immersive virtual reality for cooperative archaeological analysis: The Appian way case study: Proceeding of the 8th International Conference on Virtual Systems and Multimedia VSMM.Google Scholar
  15. Gehlken, E. (1990). Uruk. Spätbabylonische Wirtschaftstexte aus dem Eanna-Archiv. Teil I. Ausgrabungen in. Uruk-Warka, Endberichte, Band 5.Google Scholar
  16. Goss S., Beckers, R., Deneubourg, J.L., Aron, S. & Pasteels, J.M. (1990). How trail laying and trail following can solve foraging problems for ant colonies. In R. N. Hughes (Ed.), Behavioral mechanisms of food selection. NATO ASI Series (Vol. 20. pp. 661–678).Google Scholar
  17. Grassé, P. P. (1959). La théorie de la stigmergie: essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 6, 41–81.CrossRefGoogle Scholar
  18. Grassé, P.P. (1984). Fondation des Sociétés–Construction. Termitologia, tome II. Google Scholar
  19. Hahn, D. V., Duncan, D. D., Baldwin, K. C., Cohen, J. D., & Purnomo, B. (2006). Digital hammurabi: Design and development of a 3d scanner for cuneiform tablets. Proceedings of SPIE, 6056, 130–141.Google Scholar
  20. Hahn, D. V., Baldwin, K. C., & Duncan, D. D. (2007). Non-laser-based scanner for three-dimensional digitization of historical artifacts. Applied Optics, 46(15), 2838–2850.CrossRefGoogle Scholar
  21. Helbing, D., Keltsch, J., & Molnár, P. (1997a). Modelling the evolution of human trail systems. Nature, 388(6637), 47–50.Google Scholar
  22. Helbing, D., Schweitzer, F., Keltsch, J., & Molnár, P. (1997b). Active walker model for the formation of human and animal trail systems. Physical Review E. 56(3), 2527–2539. http://link.aps.org/doi/10.1103/PhysRevE.56.2527. Retrieved March 12, 2013
  23. Holland, O., & Melhuish, C. (1999). Stigmergy, self-organization, and sorting in collective robotics. Artificial Life, 5(2), 173–202.CrossRefGoogle Scholar
  24. Kampel, M., and Sablatnig, R. (2004). 3D puzzling of archeological fragments. Proceedings of 9th Computer Vision Winter Workshop. pp. 31–40.Google Scholar
  25. Koller, D., & Levoy, M. (2004). Computer-Aided Reconstruction and New Matches in the Formae Urbis Romae. Formae Urbis Romae: Nuove scoperte.Google Scholar
  26. Lewis, A., & Ch’ng, E. (2012). A photogrammetric analysis of cuneiform tablets for the purpose of digital reconstruction. International Journal of Cultural Heritage in the Digital Era, EuroMED Supplement, 1(1), 49–53.CrossRefGoogle Scholar
  27. Löffler, J. (2002). Adaptive visualization of distributed 3D documents using image streaming techniques. Proceedings of the Sixth Eurographics Workshop on Multimedia. pp. 9–19.Google Scholar
  28. Macdonald, L. W. (2011). Visualising an egyptian artefact in 3D: Comparing RTI with laser scanning. Proceedings of the 2011 International Conference on Electronic Visualisation and the Arts. pp. 155–162.Google Scholar
  29. Murray, J. (1864). Photography. London Quarterly Review, 116(1), 497–498.Google Scholar
  30. Papaioannou, G., Karabassi, E., & Theoharis, T. (2002). Reconstruction of three-dimensional objects through matching of their parts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1), 114–124.CrossRefGoogle Scholar
  31. Peters, P.J. (1970). Orb web construction: Interaction of spider (Araneus diadematus Cl.) and thread configuration. Animal Behaviour. 18 Part 3(0), 478–484.Google Scholar
  32. Rabaud, E. (1937). Phénomène social et sociétés animales. Paris: Felix Alcan.Google Scholar
  33. Smith, A. P. (1978). An investigation of the mechanisms underlying nest construction in the mud wasp Paralastor sp. (Hymenoptera: Eumenidae). Animal Behaviour. 26 Part 1(0), 232–240.Google Scholar
  34. Theraulaz, G., & Bonabeau, E. (1999). A brief history of stigmergy. Artificial Life, 5(2), 97–116.CrossRefGoogle Scholar
  35. Wolfram, S. (1986). Theory and applications of cellular automata. Singapore: World Scientific.zbMATHGoogle Scholar
  36. Woolley, S. I., Davis, T. R., Flowers, N. J., Pinilla-Dutoit, J., Livingstone, A., & Arvanitis, T. N. (2002). Communicating cuneiform: The evolution of a multimedia cuneiform database. The Journal of Visible Language, Special Edition on Research in Communication Design., 36(3), 308–324.Google Scholar
  37. Woolley, S. I., Flowers, N. J., Arvanitis, T. N., Livingstone, A., Davis, T. R., & Ellison, J. (2001). 3D capture, representation and manipulation of cuneiform tablets. Proceedings of SPIE (Three Dimensional Image Capture and Applications IV)., 4298(0277), 103–110.Google Scholar
  38. Zhu, L., Zhou, Z., & Hu, D. (2008). Globally consistent reconstruction of ripped-up documents. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(1), 1–13.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Eugene Ch′ng
    • 1
    • 4
    Email author
  • Andrew Lewis
    • 1
  • Rolf Erlend Gehlken
    • 3
  • Sandra I. Woolley
    • 2
  1. 1.IBM Visual and Spatial Technology CentreUniversity of BirminghamEdgbastonUK
  2. 2.Electronic Electrical and Computer EngineeringUniversity of BirminghamEdgbastonUK
  3. 3.Institut für Archaeologische WissenschaftenGoethe-UniversitätFrankfurtGermany
  4. 4.Centre for Creative Content and Digital InnovationUniversiti MalayaKuala LumpurMalaysia

Personalised recommendations