Digital Reconstruction of Archaeological Sites and Monuments: Some Experiences in South-Eastern Sicily

  • Cettina SantagatiEmail author
  • Mariateresa Galizia
  • Graziana D’Agostino
Part of the Springer Series on Cultural Computing book series (SSCC)


Over the past few years, technological innovation has contributed to the development of the methodology to acquire, analyse, use and convey information about cultural heritage. Among all the possible methods for acquiring data, those related to 3D laser scanners (Time of flight or structured light) stand out. By using these technologies it is possible to sample, in a short time and with great accuracy, millions of points from real world objects obtaining a detailed 3D representation. This study presents the results of research carried out on archaeological sites and monuments of South-Eastern Sicily. The case studies presented belong to different type sites and they have been dealt with using methodological approaches chosen for the specific purposes of the study (restoration and conservation project, 3D reconstruction and visualisation, 3D documentation). The comparison between the different case studies might be the starting point for a new standardisation of digital representation of archaeological heritage objects and new methodological procedures.


Laser scanning 3D modelling Virtual archaeology 3D reconstruction Conservation Digital heritage 



The study on “Torre Rossa” was conducted in collaboration with the Superintendency of Cultural Heritage of Catania within the project for the “Works for making secure and restoring the Roman sepulchral monument named “Torre Rossa” in Fiumefreddo di Sicilia (Catania)”: Director Architect Giovanna Buda, Director Archaeologist Dr. Francesco Privitera and Surveyor Salvatore Vitale. The 3D data acquisition and processing were carried out by Cettina Santagati and MariateresaGalizia.

The study on the “Terme dell’Indirizzo” was conducted within the research of the Laboratory of Architectural Photogrammetry and Survey. The in situ acquisitions and the alignment of the scans were carried out by Alessia Giuffrida, Mariangela Liuzzo and Cettina Santagati. The following processing included in this publication was carried out by Cettina Santagati.

The study on the Catacombs of San Giovanni was conducted in collaboration with the Pontifical Commission for Sacred Archaeology, Inspectorate for the Catacombs of eastern Sicily, Dr. MariaritaSgarlata and Dr. Elisa Bonacini. The 3D data acquisition and processing were carried out by Graziana D’Agostino, Mariateresa Galizia and Cettina Santagati.

We also wish to thank Engineer Matteo Sgrenzaroli (Gexcel) for his assistance during the processing with the Reconstructor software and Architect Federico Uccelli (Leica Geosystem) for his suggestions during the phases of on-site acquisition.

We also wish to thank Agata Aladio for her translation and revisions; finally a special thanks to Eugene Ch′ng and Henry Chapman for their careful help during the review of the chapter.


  1. Andreozzi, L., (2003). Il laser scanner la nostra esperienza. Enna: Il lunario.Google Scholar
  2. Andreozzi, L. (Ed.). (2007). Il Rilievo dei Beni Architettonici e Archeologici, Giornate di studio sulle nuove frontiere del rilevamento digitale, Esperienze del passato e prospettive. Roma: Aracne Editrice.Google Scholar
  3. Apollonio, F. I., et al. (2012). 3D reality-based artefact models for the management of archaeological sites using 3D Gis: A framework starting from the case study of the Pompeii Archaeological area. Journal of Archaeological Science, 39, 1271–1287.CrossRefGoogle Scholar
  4. Atzeni, C., et al. (2004). High accuracy 3D modeling of Cultural Heritage: The digitizing of Donatello’s Maddalena. IEEE Transactions on Image Processing, 13(3), 370–380.CrossRefGoogle Scholar
  5. Barbarini, C. (2006). Autocad e il Rilievo Archeologico digitale. Perugia: Morlacchi Editore.Google Scholar
  6. Benedetti, B., et al. (2009). Modelli digitali 3D in archeologia: iI caso di Pompei. Pisa: EdizionidellaNormale.Google Scholar
  7. Beraldin, J. A. et al. (2002). Virtualizing a Byzantine crypt by combining high-resolution textures with laser scanner 3D data. In 8th International Conference on Virtual Systems and Multimedia‚ Creative and Digital Culture, pp. 3–14.Google Scholar
  8. Böhler, W., & Marbs, A. (2003). Investigating laser scanner accuracy. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(5), 696–701.Google Scholar
  9. Bonacini, E. (2011). Nuove tecnologie per la fruizione e la valorizzazione del patrimonio culturale. Roma: AracneEditrice.Google Scholar
  10. Bonacini, E. et al. (2012) The catacombs of San Giovanni in syracuse: surveying, digital enhancement and revitalization of an archaeological landmark. In M. Ioannides, et al. (Eds.) Euromed 2012, progress in cultural heritage preservation, LNCS 7616 (pp. 396–403). Berilin, Eidelberg: Springer-Verlag.Google Scholar
  11. Branciforti, M. G. (2005). Catania dalla preistoria al medioevo. In F. Privitera & U. Spigo (Eds.), Dall’Alcantara agli Iblei. La ricerca archeologica in provincia di Catania. Palermo, pp. 175–199.Google Scholar
  12. Buda, G. et al. (2012). Interdisciplinary investigations aimed at the preservation of a funerary roman monument named “Torre Rossa” in Fiumefreddo di Sicilia. In J. Jasieńko (Ed.), Structural Analysis of Historical Constructions, WiadomościKonserwatorskie (Conservation News—Journal of the Association of Monument Conservators) (pp. 2314–2322). Wrocław: DWE.Google Scholar
  13. Campana, S., & Francovich, R. (2006). Laser Scanner e GPS. Paesaggi archeologici e tecnologie digitali 1. Firenze: All’Insegna del Giglio.Google Scholar
  14. Cherubini, A. (2008). Manuale di Rilievo e Documentazione grafica delle strutture architettoniche ed archeologiche., Roma.
  15. Cluverio, P. (1619). Sicilia Antiqua. LugduniBatavorum, Elsevier.Google Scholar
  16. Collin-Bouffier, S. (1987). L’alimentation en eau de la colonie greques de Syracuse (Reflexionesur la cite et sur son territoire). MEFRA, Mélanges de l’Écolefrançaise de Rome. Antiquité, 99(2), 661–691.Google Scholar
  17. Crosilla, F., & Galetto, R. (2003). La tecnica del laser scanning. Teoria ed applicazioni. Udine: CISM.Google Scholar
  18. Crosilla, F., & Desqual, S. (2006). Laser scanning terrestre. Udine: CISM.Google Scholar
  19. D’Andrea, A. (2006). Documentazione archeologica, Standard e Trattamento Informatico. Budapest: Archaeolingua.Google Scholar
  20. De Luca, L. (2011). Verso la caratterizzazione semantica di rappresentazioni digitali di artefatti architettonici: linee programmatiche di ricerca. Disegnarecon, 4(8), 99–106.Google Scholar
  21. Di Grazia, V. (1991). Rilievo e Disegno nell’Archeologia e nell’Architettura, Tecniche, Opinioni e Teorie. Roma: Edizioni Kappa.Google Scholar
  22. Docci, M. et al. (2001). Una nuova cultura per il rilevamento. Disegnare Idee e Immagini, 23, 3–46.Google Scholar
  23. El-Hakim, S., et al. (2004). Detailed 3D reconstruction of large-scale heritage sites with integrated techniques. IEEE Computer Graphics and Application, 24(3), 21–29.CrossRefGoogle Scholar
  24. Fantini, F. (2012). Variable level of detail in archaeological 3D models obtained through a digital survey. Revista EGA Expression Gráfica Arquitectonica, 19, 306–317.Google Scholar
  25. Forte, M. (2010). Cyber archaeology (Vol. 2177). Oxford: BAR International Series.Google Scholar
  26. Forte, M. et al. (2005a). The AppiaAntica Project. In Proceedings of the 2nd Italy-United States Workshop (Vol. 1379). Berkeley: BAR International Series.Google Scholar
  27. Forte, M. et al. (2005b). An integrated approach to archaeology: from the fieldwork to virtual reality systems. In Proceedings of CAA2004. Oxford: BAR International Series.Google Scholar
  28. Gabucci, A. (2005). Informatica applicata all’archeologia. Roma: Caroccieditore.Google Scholar
  29. Gaiani, M., Micoli, L. L. (2005). A framework to build and visualise 3D models from real world data for historical architecture and archaeology as a base for a 3D information system. The reconstruction of Archaeological Landscapes through Digital Technologies (pp. 103–125). Berkeley: BAR. Google Scholar
  30. Gaiani, M. et al. (2007). Realtà Virtuale come strumento di lavoro per il restauro Architettonico e Archeologico: il 3D Virtual GIS “La Via Appia antica”. In Ut Natura Ars. Virtual Reality e archeologia. Studi e Scavi (Vol. 22, pp. 107–114). Imola: University Press Bologna.Google Scholar
  31. Gaiani, M. et al. (2009). Standard di acquisizione e strutturazione di modelli digitali per sistemi informativi di aree archeologiche: il caso di Pompei. Disegnare Idee Immagini 39: 60–73.Google Scholar
  32. Gaiani, M., & Benedetti, B. (2010). A responsible modelling framework for a 3D GIS archaeological prototype (The Pompeii case study). In EVA 2010 Florence Electronic Imaging and the Visual Arts Proceedings. PitagoraEditore (pp. 102–107), Bologna.Google Scholar
  33. Gaiani, M. et al. (2011). Teorie per rappresentare e comunicare i siti archeologici attraverso modelli critici. SCIentificRESearch and Information Technology, Ricerca Scientifica e Tecnologie dell’Informazione, 1(2), 33–70.Google Scholar
  34. Gaiani, M., et al. (2000). Reshaping the Coliseum in Rome: an integrated data capture and modelling method at heritage sites. Iatti del convegno Eurographics. nterlaken, 2000, 20–25.Google Scholar
  35. Galizia, M., & Santagati, C. (2009). Sperimentazione della tecnica laser scanner 3D per la conoscenza valorizzazione e fruizione del parco archeologico di Caucana. In 13°Conferenza Nazionale Asita, pp. 1089–1094.Google Scholar
  36. Galletta, G. (2001). Architettura cimiteriale paleocristiana: rilettura del cubicolo di Eusebio nella catacomba di San Giovanni a Siracusa. Tecnologos, 2.Google Scholar
  37. Giuffrida, A., et al. (2005). The laser scanner for archeologicalsurvey: “le terme dell’Indirizzo” in Catania. ISPRS International Archives of Photogrammetry. Remote Sensing and Spatial and Information Sciences, 36(5), 316–321.Google Scholar
  38. Giuffrida, A. et al. (2007). Il laser scanner per il rilevamento delle opere archeologiche. Le terme dell’Indirizzo a Catania. In L. Andreozzi (Ed.), Il Rilievo dei Beni Architettonici ed Archeologici. Giornate di studio su Le nuove frontiere del rilevamento digitale Esperienze del passato e prospettive. Atti Convegno 2005. Roma: Aracne, pp. 47–60.Google Scholar
  39. Giuliani, C. F. (1976). Archeologia e documentazione grafica. Roma: Edizioni De Luca.Google Scholar
  40. Griesheimer, M. (1989). Genèse et developpement de la catacomb Saint-Jean à Syracuse, MEFRA, Mélanges de l’École française de Rome. Antiquité, 10(2), 751–782.Google Scholar
  41. Guidi, G., et al. (2009). A multi-resolution methodology for the 3D modeling of large and complex archaeological areas. International Journal of Architectural Computing, 7(1), 39–55.MathSciNetCrossRefGoogle Scholar
  42. Guidi, G. et al. (2010). Acquisizione 3D e modellazionepoligonale. Milano: McGraw-Hill Companies.Google Scholar
  43. Guidi, G. et al. (2002). Multiscale archaeological survey based on the integration of 3D scanning and photo-grammetry. International Workshop on Scanning for Cultural Heritage Recording—Complementing or Replacing Photogrammetry (pp. 58–64). Corfu: National Research Council Canada.Google Scholar
  44. Houel, J. (1782–1787) Voyage pittoresque des isles de Sicile (Vol. 2), de Malte et de Lipari. Paris.Google Scholar
  45. Inzerillo, L. (2011). Augmented Reality. ECQTG 2011, Greek Society for Demographic Studies (pp. 250–257).Google Scholar
  46. Inzerillo, L. (2013). Augmented reality: Past, present, future. In Proceeding of SPIE 8649, The Engineering Reality of Virtual Reality 2013, 86490 E, March 4, 2013.Google Scholar
  47. La Sicilia di Jean Houel all’Ermitage (1989). Palermo: Sicilcassa.Google Scholar
  48. Lerma, J. L. et al. (2010). Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: The Upper Palaeolithic Cave of Parpallo′ as a case study. Journal of Archaeological Science, 37, 499–507.CrossRefGoogle Scholar
  49. London Charter:© Accessed 7 October 2013.Google Scholar
  50. Manferdini, A. M. et al. (2008). 3D modeling and semantic classification of archaeological finds for management and visualization in 3D archaeological databases. 14th International Conference on Virtual Systems and Multimedia—Project Papers (pp. 221–228). Budapest: Archaeolingua.Google Scholar
  51. Manferdini, A. M., & Remondino, F. (2012). A review of reality-based 3D model generation, segmentation and web-based visualization methods. International Journal of Heritage in the Digital Era, 1(1), 103–124.CrossRefGoogle Scholar
  52. Mascione, C. (2006). Il rilievo strumentale in archeologia. Roma: Carocci Editore.Google Scholar
  53. Medri, M. (2008). Manuale di Rilievo Archeologico. Bari: Editori Laterza.Google Scholar
  54. Migliari, R. (2001) Frontiere del rilievo. Dalla matita alle scansioni 3D. Roma: Gangemi Editore.Google Scholar
  55. Paolini, P. (2010). Per una storia del disegno di rilievo archeologico, in Ikhnos. Siracusa: Lombardi Editori.Google Scholar
  56. Pecchioli, L., & Mazzei, B. (2011). The museum of the sculptures in the Basilica of Saint Silvestro at the Catacombs of Priscilla. A virtual visit using Isee Web-Application. EVA 2011 Florence—Electronic Imaging and the Visual Arts.Google Scholar
  57. Pennacchioni, M. (2004). Metodologie e tecniche del disegno archeologico. Firenze: All’insegna del Giglio.Google Scholar
  58. Remondino, F. (2011). Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sensing, 3(6), 1104–1138.CrossRefGoogle Scholar
  59. Remondino, F. et al. (2009). 3D modeling of complex and detailed cultural heritage using multi-resolution data. Journal on Computing and Cultural Heritage, 2(1), 2.CrossRefGoogle Scholar
  60. Remondino, F. (2005). 3D modelling of close-range objects: Photogrammetry or laser scanning? SPIE IS&T Electronic Imaging. Videometrics, 8(5665), 216–225.Google Scholar
  61. Remondino, F., & El-Hakim, S. (2006). Image-based 3D modelling: a review. Photogrammetric Record, 21(115), 269–291.CrossRefGoogle Scholar
  62. Restuccia, F. et al. (2012). Archaeology and Nature: Hyblaean cultural landscape and territorial regeneration. In Carmine Gambardella, Less More Architecture Design Landscape. Le vie dei Mercanti _ X Forum Internazionale di Studi, Collana Fabbrica della Conoscenza 16. La Scuola di Pitagora Editrice, Napoli, pp. 1082–1091.Google Scholar
  63. Rossi, M., & Salonia, P. (2003). Comunicazione multimediale per i beni culturali Ed. Milano: Addison Wesley.Google Scholar
  64. Russo, M. et al. (2011). Principali tecniche e strumenti per il rilievo tridimensionale in ambito archeologico. Archeologia e Calcolatori, 22, 169–198.Google Scholar
  65. Sansoni, G. et al. (2000). Calibration and performance evaluation of a 3-D imaging sensor based on the projection of structured light. IEEE Transaction on Instrumentation and Measurement, 49(3), 628–636.CrossRefGoogle Scholar
  66. Santana Quintero, M. et al. (2008). Theory and practice on Terrestrial Laser scanning: Training material based on practical applications. Valencia: Universidad Politecnica de Valencia Editorial.Google Scholar
  67. Scheiblauer, C. et al. (2009) Interactive domitilla catacomb exploration. 10th International Symposium on Virtual Reality, Archaeology and Cultural Heritage, (pp. 65–72).Google Scholar
  68. Seville Charter: Accessed 7 October 2013.
  69. Sgarlata, M. (1996). Le stagioni della rotonda di Adelfia. Indagini 1988 e 1993 nella catacomba di S. Giovanni a Siracusa, Rivista di Archeologia Cristiana, 72, 75–113.Google Scholar
  70. Stanco, F. et al. (2011). Digital imaging for cultural heritage preservation—analysis, restoration and reconstruction of ancient artworks. Boca Raton: CRC Press/Taylor & Francis—Digital Imaging and Computer Vision Book Series.Google Scholar
  71. Stanco, F. et al. (2012). Augmented Perception of the Past. The Case of Hellenistic Syracuse. Journal of Multimedia, 7(2), 211–216.Google Scholar
  72. Tolle-Kastenbein, R. (1990). Archeologiadell’acqua. La cultura idraulica nel mondo classico. Milano: Longanesi & C.Google Scholar
  73. Tolotti, F. (1980). Influenza delle opere idrauliche sull’origine delle catacombe. Rivista di Archeologia Cristiana, 56, 7–48.Google Scholar
  74. UNESCO (2003). Charter on the Preservation of the Digital Heritage.Google Scholar
  75. Valentini, P. et al. (2004). Una Metodologia per l’Analisi e l’Archiviazione di Reperti Archeologici Basata sul Rilievo Mediante Scanner Laser Tridimensionali a Non-Contatto. In AA.VV, Archiviazione e Restauro di Reperti Archeologici Mediante tecniche CAD-RP. Giannini, Napoli.Google Scholar
  76. Vassena, G. P., & Sgrenzaroli, M. (2007). Tecniche di rilevamento tridimensionale tramite laser scanner. Brescia: Starrylink.Google Scholar
  77. Wilson, J. A. R. (2003). A group of Roman House Tombs at Tauromenium (Taormina). In Bacci, G. et al. (Ed.), Studi classici in onore di Luigi BernabòBrea (pp. 247–272), Messina.Google Scholar
  78. Zimmermann, N., & Esser, G. (2008). Showing the invisible—Documentation and research on the Roman Domitilla catacomb based on Image-Laser-Scanning and 3D-Modelling. In 35th International Conference on Computer Applications and Quantitative Methods in Archaeology (CAA). pp. 58–64.Google Scholar
  79. Zimmermann, N. (2009a) Generating a photo realistic virtual model for the large Domitilla-Catacomb in Rome. In Optical 3D measurement techniques IX (pp. 38–47), July 1–3, Vienna.Google Scholar
  80. Zimmermann, N. et al. (2009b). Interactive domitilla catacomb exploration. In VAST 2009—10th International Symposium on Virtual Reality, Archaeology, and Cultural Heritage—Eurographics Symposium Proceedings. 2009 EurographicsAssociation (Aire-la Ville 2009) (pp. 65–72).Google Scholar
  81. Zimmermann, N. (2010). La documentazione tridimensionale di Domitilla: Il laserscan di una catacomba romana. In Proceedings of International Colloquiums “Vesuviana. Archeologie a confronto”, Gennaio 2008, Bologna, pp. 403-414.Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Cettina Santagati
    • 1
    Email author
  • Mariateresa Galizia
    • 1
  • Graziana D’Agostino
    • 1
  1. 1.Laboratory of Architectural Photogrammetry and Survey “Luigi Andreozzi”, Department of ArchitectureThe University of CataniaCataniaItaly

Personalised recommendations