Skip to main content

Multiple-Criteria Analysis of Life Cycle of Energy-Efficient Built Environment

  • Chapter
  • First Online:
Nearly Zero Energy Building Refurbishment

Abstract

For a broader application of the life cycle of energy-efficient built environment in the practice of various countries, more attention needs to be paid not only on the selected most rational processes and solutions, the interest level of the stakeholders, but also on the micro-, meso- and macro-level factors. The authors of this article developed the life cycle of energy-efficient built environment model and different decision support systems over the course of two international projects (IDES-EDU and LEAN CC). Based on this model, professionals involved in design and realization of life cycle of energy-efficient built environment can develop a lot of the alternatives as well as assessing them and making the final choice of the most efficient variant. The model and two systems (Energy Efficient House DSS for cooling and decision support system for assessment of energy generation technologies) are briefly described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afgan NH, Carvalho MG (2002) Multi-criteria assessment of new and renewable energy power plants. Energy 27:739–755

    Article  Google Scholar 

  • Alanne K, Salo A, Saari A, Gustafsson SI (2007) Multicriteria evaluation of residential energy supply systems. Energy Buildings 39(12):1218–1226

    Article  Google Scholar 

  • Allwood JM, Cullen JM, Milford RL (2010) Options for achieving a 50 % cut in industrial carbon emissions by 2050. Environ Sci Technol 44(6):1888–1894

    Google Scholar 

  • American Lung Association (2005) State of the air, American Lung Association. Available from: http://www.lung.org/assets/documents/publications/stateof-the-air/stateof-the-air-report-2005.pdf

  • Asadi E, Silva MG, Antunes CH, Dias L (2012a) A multi-objective optimization model for building retrofit strategies using TRNSYS simulations, GenOpt and MATLAB. Building Environ 56:370–378

    Google Scholar 

  • Asadi E, Silva MG, Antunes CH, Dias L (2012b) Multi-objective optimization for building retrofit strategies: a model and an application. Energy Buildings 44:81–87

    Google Scholar 

  • Beccali M, Cellura M, Ardente D (1998) Decision making in energy planning: the ELECTRE multicriteria decision analysis approach compared to a fuzzy-sets methodology. Energy Convers Manage 39(16–18):1869–1881

    Article  Google Scholar 

  • Beccali M, Cellura M, Mistretta M (2003) Decision-making in energy planning. Application of the Electre method at regional level for the diffusion of renewable energy technology. Renew Energy 28(13):2063–2087

    Article  Google Scholar 

  • Cavallaro F (2005) An integrated multi-criteria system to assess sustainable energy options: An application of the PROMETHEE method. Fondazione Eni Enrico Mattei, Nota di Lavaro, University of Molise, Campobasso

    Google Scholar 

  • Cavallaro F, Ciraolo L (2005) A multicriteria approach to evaluate wind energy plants on an Italian island. Energy Policy 33:235–244

    Article  Google Scholar 

  • Chen SJ, Hwang CL (1992) Fuzzy multiple attribute decision making: methods and applications. Lecture notes in economics and mathematical systems, No. 375, Sringer, Berlin, Germany

    Google Scholar 

  • Cohen AJ, Ross AH, Ostro B et al (2005) The global burden of disease due to outdoor air pollution. J Toxicol Environ Health A. 68:1301–1307

    Article  Google Scholar 

  • Cullen JM, Allwood JM (2010) The efficient use of energy: tracing the global flow of energy from fuel to service. Energy Policy 38(1):75–81

    Article  Google Scholar 

  • Diakaki C, Grigoroudis E, Kolokotsa D (2008) Towards a multi-objective optimization approach for improving energy efficiency in buildings. Energy Buildings 40(9):1747–1754

    Article  Google Scholar 

  • Diakaki C, Grigoroudis E, Kabelis N, Kololotsa D, Kalaitzakis K (2010) A multi-objective decision model for the improvement of energy efficiency in buildings. Energy 35:5483–5496

    Article  Google Scholar 

  • Diakoulaki D, Zopounidis C, Mavrotas G, Doumpos M (1999) The use of a preference disaggregation method in energy analysis and policy making. Energy Int J 24:157–166

    Article  Google Scholar 

  • Flourentzou F, Roulet C-A (2002) Elaboration of retrofit scenarios. Energy Buildings 34:185–192

    Article  Google Scholar 

  • Gamboa G, Munda G (2007) The problem of windfarm location: a social multicriteria evaluation framework. Energy Policy 35:1564–1583

    Article  Google Scholar 

  • Georgi JN, Dimitriou D (2010) The contribution of urban green spaces to the improvement of environment in cities: case study of Chania, Greece. Building Environ 45(6):1401–1414

    Article  Google Scholar 

  • Georgopoulou E, Lalas D, Papagiannakis L (1997) A multicriteria decision aid approach for energy planning problems: the case of renewable energy option. Eur J Oper Res 103:38–54

    Article  MATH  Google Scholar 

  • Gero JS, Neville DC, Radford AD (1983) Energy in context: a multi-criteria model for building design. Building Environ 18(3):99–107

    Article  Google Scholar 

  • Goodfield D, Anda M, Ho G (2011) Carbon neutral mine site accommodation village: developing the model. In: MODSIM 2011—19th international congress on modelling and simulation—sustaining our future: understanding and living with uncertainty. pp 3038–3044

    Google Scholar 

  • Goumas MG, Lygerou VA, Papayannakis LE (1999) Computational methods for planning and evaluation geothermal energy projects. Energy Policy 27:147–154

    Article  Google Scholar 

  • Haralambopoulos DA, Polatidis H (2003) Renewable energy projects: structuring a multi-criteria group decision-making framework. Renew Energy 28:961–973

    Article  Google Scholar 

  • Jaber JO, Jaber QM, Sawalha SA, Mohsen MS (2008) Evaluation of conventional and renewable energy sources for space heating in the household sector. Renew Sustain Energy Rev 12(1):278–289

    Article  Google Scholar 

  • Jaggs M, Palmar J (2000) Energy performance indoor environmental quality retrofit–a European diagnosis and decision making method for building refurbishment. Energy Buildings 31:97–101

    Article  Google Scholar 

  • Juan Y-K, Kim JH, Roper K, Lacouture DC (2009) GA-based decision support system for housing condition assessment and refurbishment strategies. Automat Constr 18:394–401

    Article  Google Scholar 

  • Kablan MM (2004) Decision support for energy conservation promotion: an analytic hierarchy process approach. Energy Policy 32:1151–1158

    Article  Google Scholar 

  • Kaklauskas A, Zavadskas EK (2007) Decision support system for innovation with a special emphasis on pollution. Int J Environ Pollut 30(3–4):518–528

    Article  Google Scholar 

  • Kaklauskas A, Zavadskas EK, Raslanas S (2005) Multivariant design and multiple criteria analysis of building refurbishments. Energy Buildings 37(4):361–372

    Article  Google Scholar 

  • Kaklauskas A, Zavadskas EK, Raslanas S, Ginevicius R, Komka A, Malinauskas P (2006) Selection of low-e windows in retrofit of public buildings by applying multiple criteria method COPRAS: a Lithuanian case. Energy Buildings 38(5):454–462

    Article  Google Scholar 

  • Keirstead J, Jennings M, Sivakumar A (2012) A review of urban energy system models: approaches, challenges and opportunities. Renew Sustain Energy Rev 16(6):3847–3866

    Article  Google Scholar 

  • LÞken E (2007) Use of multicriteria decision analysis methods for energy planning problems. Renew Sustain Energy Rev 11(7):1584–1595

    Article  Google Scholar 

  • Malckzewski J (1999) GIS and multicriteria decision analysis. Wiley, New York

    Google Scholar 

  • Jacobson MZ, Delucchi MA (2011) Providing all global energy with wind, water, and solar power, part I: technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 39(3):1154–1169

    Article  Google Scholar 

  • Mendoza JMF, Oliver-Solà J, Gabarrell X, Rieradevall J, Josa A (2012) Planning strategies for promoting environmentally suitable pedestrian pavements in cities. Transp Res Part D: Transp Environ 17(6):442–450

    Article  Google Scholar 

  • Mirasgedis S, Diakoulaki D (1997) Multicriteria analysis vs. externalities assessment for the comparative evaluation of electricity generation systems. Eur J Oper Res 102:364–379

    Article  MATH  Google Scholar 

  • Morrissey J, Moore T, Horne RE (2011) Affordable passive solar design in a temperate climate: an experiment in residential building orientation. Renew Energy 36:568–577

    Article  Google Scholar 

  • Multi-criteria analysis (2009) A manual. Department for Communities and Local Government, London. Available from: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/7612/1132618.pdf

  • Nagesha N, Balachandra P (2006) Barriers to energy efficiency in small industry clusters: multi-criteria-based prioritization using the analytic hierarchy process. Energy 31(12):1969–1983

    Article  Google Scholar 

  • Nakicenovic N, Grubler A, Inaba A, Messner S, Nilsson S, Nishimura Y, Rogner H-H, Schafer A, Schrattenholzer L, Strubegger M, Swisher J, Victor D, Wilson D (1993) Long-term strategies for mitigating global warming. Energy 18(5):401–609

    Article  Google Scholar 

  • Niemi R, Mikkola J, Lund PD (2012) Urban energy systems with smart multi-carrier energy networks and renewable energy generation. Renew Energy 48:524–536

    Article  Google Scholar 

  • Nigim K, Munier N, Green J (2004) Pre-feasibility MCDM tools to aid communities in prioritizing local viable renewable energy sources. Renew Energy 29:1775–1791

    Article  Google Scholar 

  • Pacheco R, Ordóñez J, Martínez G (2012) Energy efficient design of building: a review. Renew Sustain Energy Rev 16(6):3559–3573

    Article  Google Scholar 

  • Renn O (2003) Social assessment of waste energy utilization scenarios. Energy Int J 28:1345–1357

    Article  Google Scholar 

  • Rey E (2004) Office building retrofitting strategies: multicriteria approach of an architectural and technical issue. Energ Buildings 36:367–372

    Article  Google Scholar 

  • Saaty TL (2001) Fundamentals of decision making and priority theory with the analytic hierarchy process. RWS Publications, Pittsburgh

    Google Scholar 

  • Salo AA, HÀmÀlÀinen RP (1992) Preference assessment by imprecise ratio statements. Oper Res 40(6):1053–1061

    Article  MATH  Google Scholar 

  • Sliogeriene J, Kaklauskas A, Zavadskas EK, Bivainis J, Seniut M (2009) Environment factors of energy companies and their effect on value: analysis model and applied methods. Technol Econ Dev Econ 15(3):490–521

    Article  Google Scholar 

  • Sliogeriene J, Kaklauskas A, Streimikiene D, Bianchi M (2012) Multiple criteria decision support system for the assessment of energy generation technologies considering the dimension of values. Int J Strateg Property Manage 16(4):370–391

    Article  Google Scholar 

  • Thiel T, Mroz T (2001) Application of multi-criterion decision aid method in designing heating systems for museum buildings. Informatica 12(1):133–146

    MATH  Google Scholar 

  • Triantaphyllou E, Shu B, Sanchez SN, Ray T (1998) Multi-criteria decision making: an operations research approach. In: Webster JG (ed) Encyclopedia of electrical and electronics engineering, vol 15. Wiley, New York, pp 175–186

    Google Scholar 

  • Tzempelikos A, Athienitis AK, Karava P (2007) Simulation of façade and envelope design options for a new institutional building. Sol Energy 81(9):1088–1103

    Article  Google Scholar 

  • Wright JA, Loosemore HA, Farmani R (2002) Optimization of building thermal design and control by multi-criterion genetic algorithm. Energy Buildings 34(9):959–972

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artūras Kaklauskas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Kaklauskas, A. et al. (2013). Multiple-Criteria Analysis of Life Cycle of Energy-Efficient Built Environment. In: Pacheco Torgal, F., Mistretta, M., Kaklauskas, A., Granqvist, C., Cabeza, L. (eds) Nearly Zero Energy Building Refurbishment. Springer, London. https://doi.org/10.1007/978-1-4471-5523-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5523-2_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5522-5

  • Online ISBN: 978-1-4471-5523-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics