Skip to main content

Co-recognition of Images and Videos: Unsupervised Matching of Identical Object Patterns and Its Applications

  • Chapter
Advanced Topics in Computer Vision

Abstract

In this chapter, we address the problem of detecting, matching, and segmenting all identical object-level patterns from images or videos in an unsupervised way, called the “co-recognition” problem. In an unsupervised setting without any prior knowledge of specific target objects, it relies entirely on geometric and photometric relations of visual features. To solve this problem, a multi-layer match-growing framework is proposed which explores given visual data by intra-layer expansion and inter-layer merge. We demonstrate the effectiveness of this approach on identical object detection, image retrieval, symmetry detection, and action recognition. These applications will validate the usefulness of co-recognition to several vision problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://cv.snu.ac.kr/~corecognition

  2. 2.

    The dataset, the ground truth, and the result images of [35] and [33] are borrowed from http://vision.cse.psu.edu/evaluation.html.

References

  1. Alexe B, Deselaers T, Ferrari V (2010) What is an object? In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  2. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522

    Article  Google Scholar 

  3. Blank M, Gorelick L, Shechtman E, Irani M, Basri R (2005) Actions as space-time shapes. In: IEEE international conference on computer vision

    Google Scholar 

  4. Boiman O, Irani M (2006) Similarity by composition. In: Neural information processing system

    Google Scholar 

  5. Cho M, Lee KM (2007) Partially occluded object-specific segmentation in view-based recognition. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  6. Cho M, Lee KM (2009) Bilateral symmetry detection and segmentation via symmetry-growing. In: British machine vision conference

    Google Scholar 

  7. Cho M, Lee KM (2009) Feature correspondence and deformable object matching via agglomerative correspondence clustering. In: IEEE international conference on computer vision

    Google Scholar 

  8. Cho M, Shin YM, Lee KM (2008) Co-recognition of image pairs by data-driven Monte Carlo image exploration. In: European conference on computer vision

    Google Scholar 

  9. Cho M, Shin YM, Lee KM (2010) Unsupervised detection and segmentation of identical objects. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  10. Cho M, Shin YM, Lee KM (2011) Object correspondence networks for unsupervised recognition of identical objects. In: Emerging topics in computer vision and its applications, vol 1, p 313

    Chapter  Google Scholar 

  11. Cornelius H, Perďoch M, Matas J, Loy G (2007) Efficient symmetry detection using local affine frames. In: SCIA, pp 152–161

    Google Scholar 

  12. Efros AA, Berg AC, Mori G, Malik J (2003) Recognizing action at a distance. In: IEEE international conference on computer vision

    Google Scholar 

  13. Faugeras O (1993) Three-dimensional computer vision: a geometric viewpoint. MIT Press, Cambridge

    Google Scholar 

  14. Ferrari V, Tuytelaars T, Gool L (2006) Simultaneous object recognition and segmentation from single or multiple model views. Int J Comput Vis 67(2):159–188

    Article  Google Scholar 

  15. Filipovych R, Ribeiro E (2008) Learning human motion models from unsegmented videos. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  16. Furukawa Y, Ponce J (2007) Accurate, dense, and robust multi-view stereopsis. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  17. Hartley R, Zisserman A (2004) Multiple view geometry in computer vision. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  18. Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  19. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20:1254–1259

    Article  Google Scholar 

  20. Jain AK, Dubes RC (1998) Algorithms for clustering data. Prentice Hall, New York

    Google Scholar 

  21. Jhuang H, Serre T, Wolf L, Poggio T (2007) A biologically inspired system for action recognition. In: IEEE international conference on computer vision

    Google Scholar 

  22. Kannala J, Rahtu E, Brandt S, Heikkila J (2008) Object recognition and segmentation by non-rigid quasi-dense matching. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  23. Karlinsky L, Dinerstein M, Levi D, Ullman S (2008) Unsupervised classification and part localization by consistency amplification. In: European conference on computer vision

    Google Scholar 

  24. Ke Y, Sukthankar R, Hebert M (2007) Event detection in crowded videos. In: IEEE international conference on computer vision

    Google Scholar 

  25. Keller Y, Shkolnisky Y (2004) An algebraic approach to symmetry detection. In: IEEE international conference on pattern recognition

    Google Scholar 

  26. Kim TH, Lee KM, Lee SU (2010) Nonparametric higher-order learning for interactive segmentation. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  27. Laptev I (2005) On space-time interest points. Int J Comput Vis 64(2/3):107–123

    Article  Google Scholar 

  28. Laptev I, Lindeberg T (2003) Space-time interest points. In: IEEE international conference on computer vision

    Google Scholar 

  29. Laptev I, Marszałek M, Schmid C, Rozenfeld B (2008) Learning realistic human actions from movies. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  30. Lempitsky V, Kohli P, Rother C, Sharp T (2009) Image segmentation with a bounding box prior. In: IEEE international conference on computer vision

    Google Scholar 

  31. Lhuillier M, Quan L (2002) Match propagation for image-based modeling and rendering. IEEE Trans Pattern Anal Mach Intell 24(8):1140–1146

    Article  Google Scholar 

  32. Li Z, Liu J, Chen S, Tang X (2007) Noise robust spectral clustering. In: IEEE international conference on computer vision

    Google Scholar 

  33. Liu Y, Hays JH, Xu YQ, Shum HY (2005) Digital papercutting. Technical sketch, SIGGRAPH

    Google Scholar 

  34. Lowe DG (1999) Object recognition from local scale-invariant features. In: IEEE international conference on computer vision

    Google Scholar 

  35. Loy G, Eklundh JO (2006) Detecting symmetry and symmetric constellations of features. In: European conference on computer vision, pp II-508–II-521

    Google Scholar 

  36. Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: DARPA image understanding workshop

    Google Scholar 

  37. Marola G (1989) On the detection of the axes of symmetry of symmetric and almost symmetric planar images. IEEE Trans Pattern Anal Mach Intell 11:104–108

    Article  MATH  Google Scholar 

  38. Martin D, Fowlkes C, Malik J (2004) Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans Pattern Anal Mach Intell 26(5):530–549

    Article  Google Scholar 

  39. Matas J, Chum O, Urban M, Pajdla T (2002) Robust wide baseline stereo from maximally stable extremal regions. In: British machine vision conference

    Google Scholar 

  40. Mikolajczyk K, Schmid C (2002) An affine invariant interest point detector. In: European conference on computer vision

    Google Scholar 

  41. Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. Int J Comput Vis 60(1):63–86

    Article  Google Scholar 

  42. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630

    Article  Google Scholar 

  43. Niebles JC, Fei-Fei L (2007) A hierarchical model of shape and appearance for human action classifination. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  44. Niebles JC, Wang H, Fei-Fei L (2006) Unsupervised learning of human action categories using spatial-temporal words. In: British machine vision conference

    Google Scholar 

  45. Obdržálek S, Matas J (2002) Object recognition using local affine frames on distinguished regions. In: British machine vision conference

    Google Scholar 

  46. Park M, Lee S, Chen PC, Kashyap S, Butt AA, Liu Y (2008) Performance evaluation of state-of-the-art discrete symmetry detection algorithms. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  47. Preparata F, Shamos M (1985) Computational geometry. Springer, Berlin

    Book  Google Scholar 

  48. Rother C, Kolmogorov V, Blake A (2004) Grabcut—interactive foreground extraction using iterated graph cuts. In: ACM SIGGRAPH

    Google Scholar 

  49. Rother C, Minka TP, Blake A, Kolmogorov V (2006) Cosegmentation of image pairs by histogram matching—incorporating a global constraint into MRFs. In: IEEE conference on computer vision and pattern recognition, pp 993–1000

    Google Scholar 

  50. Shechtman E, Irani M (2005) Space-time behavior based correlation. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  51. Shin YM, Cho M, Lee KM (2010) Co-recognition of actions in video pairs. In: International conference on pattern recognition

    Google Scholar 

  52. Simon I, Seitz SM (2007) A probabilistic model for object recognition, segmentation, and non-rigid correspondence. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  53. Sivic J, Russell BC, Efros AA, Zisserman A, Freeman WT (2005) Discovering object categories in image collections. In: IEEE international conference on computer vision

    Google Scholar 

  54. Steele KL, Egbert PK (2005) Correspondence expansion for wide baseline stereo. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  55. Todorovic S, Ahuja N (2007) Unsupervised category modeling, recognition, and segmentation in images. IEEE Trans Pattern Anal Mach Intell 30(12):2158–2174

    Article  Google Scholar 

  56. Toshev A, Shi J, Daniilidis K (2007) Image matching via saliency region correspondences. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  57. Tuytelaars T, Mikolajczyk K (2008) Local invariant feature detectors: a survey. Found Trends Comput Graph Vis 3(3):177–280

    Article  Google Scholar 

  58. Vedaldi A, Soatto S (2006) Local features, all grown up. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  59. Yuan J, Wu Y (2007) Spatial random partition for common visual pattern discovery. In: IEEE international conference on computer vision, pp 1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minsu Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Cho, M., Shin, Y.M., Lee, K.M. (2013). Co-recognition of Images and Videos: Unsupervised Matching of Identical Object Patterns and Its Applications. In: Farinella, G., Battiato, S., Cipolla, R. (eds) Advanced Topics in Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5520-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5520-1_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5519-5

  • Online ISBN: 978-1-4471-5520-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics