Skip to main content

Evaluating and Extending Trajectory Features for Activity Recognition

  • Chapter
  • 3070 Accesses

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Trajectory features are a powerful new way to describe video data. By leveraging the spatio-temporal range and structure of trajectories, they improve activity recognition performance compared to systems based on fixed local spatio-temporal volumes. This chapter places them in context, compares a sparse, generative model of extended trajectories to a dense, discriminative model of local trajectories, and explores ways to extend the sparse system with new kinds of information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Black MJ, Yacoob Y (1995) Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion. In: ICCV, pp 374–381

    Google Scholar 

  2. Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022

    MATH  Google Scholar 

  3. Brox T, Malik J (2011) Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans Pattern Anal Mach Intell 33(3):500–513

    Article  Google Scholar 

  4. Cutting JE (1981) Six tenets for event perception. Cognition 10:71–78

    Article  Google Scholar 

  5. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05)—volume 1—volume 01, CVPR’05. IEEE Computer Society, Washington, pp 886–893

    Chapter  Google Scholar 

  6. Dollár P, Rabaud V, Cottrell G, Belongie S (2005) Behavior recognition via sparse spatio-temporal features. In: VS-PETS, October 2005

    Google Scholar 

  7. Jebara T (2003) Images as bags of pixels. In: ICCV

    Google Scholar 

  8. Joachims T (1999) Making large-scale SVM learning practical. Advances in kernel methods—support vector learning. MIT Press, Cambridge

    Google Scholar 

  9. Johansson G (1973) Visual perception of biological motion and a model for its analysis. Percept Psychophys 14:201–211

    Article  Google Scholar 

  10. Ke Y, Sukthankar R (2004) Pca-sift: a more distinctive representation for local image descriptors. In: CVPR, pp II-506–II-513

    Google Scholar 

  11. Laptev I, Lindeberg T (2004) Local descriptors for spatio-temporal recognition. In: Int workshop on spatial coherence for visual motion analysis

    Google Scholar 

  12. Laptev I, Marszalek M, Schmid C, Rozenfeld B (2008) Learning realistic human actions from movies. In: CVPR, Anchorage, Alaska, June 2008, pp 1–8

    Google Scholar 

  13. Le QV, Zou WY, Yeung SY, Ng AY (2011) Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: CVPR

    Google Scholar 

  14. Lewis D (1998) Naive (Bayes) at forty: the independence assumption in information retrieval. In: ECML

    Google Scholar 

  15. Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: IJCAI, pp 674–679

    Google Scholar 

  16. Marszałek M, Laptev I, Schmid C (2009) Actions in context. In: CVPR

    Google Scholar 

  17. Messing R, Pal C, Kautz H (2009) Activity recognition using the velocity histories of tracked keypoints. In: ICCV

    Google Scholar 

  18. Niebles J-C, Wang H, Fei-fei L (2006) Unsupervised learning of human action categories using spatial-temporal words. In: Proc BMVC

    Google Scholar 

  19. Ramanan D, Forsyth DA (2003) Automatic annotation of everyday movements. In: NIPS, December 2003

    Google Scholar 

  20. Shi J, Tomasi C (1994) Good features to track. In: CVPR, pp 593–600

    Google Scholar 

  21. Sidenbladh H, Black M, Fleet DJ (2000) Stochastic tracking of 3d human figures using 2d image motion. In: ECCV

    Google Scholar 

  22. Ullah MM, Parizi SN, Laptev I (2010) Improving bag-of-features action recognition with non-local cues. In: Proc BMVC, pp 95.1–95.11. doi:10.5244/C.24.95

    Google Scholar 

  23. Wang H, Ullah MM, Klaser A, Laptev I, Schmid C (2009) Evaluation of local spatio-temporal features for action recognition. In: BMVC

    Google Scholar 

  24. Wang H, Klaser A, Schmid C, Liu C-L (2011) Action recognition by dense trajectories. In: CVPR

    Google Scholar 

Download references

Acknowledgements

RM thanks the University of Rochester for support and guidance during his graduate education. AT thanks FQRNT for their financial support. CP thanks Ubisoft, NSERC, Google and the University of Rochester for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross Messing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Messing, R., Torabi, A., Courville, A., Pal, C. (2013). Evaluating and Extending Trajectory Features for Activity Recognition. In: Farinella, G., Battiato, S., Cipolla, R. (eds) Advanced Topics in Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5520-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5520-1_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5519-5

  • Online ISBN: 978-1-4471-5520-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics