Skip to main content

Learning Object Detectors in Stationary Environments

  • Chapter
Book cover Advanced Topics in Computer Vision

Abstract

The most successful approach for object detection is still applying a sliding window technique, where a pre-trained classifier is evaluated on different locations and scales. In this chapter, we interrogate this strategy in the context of stationary environments. In particular, having a fixed camera position observing the same scene a lot of prior (spatio-temporal) information is available. Exploiting this specific scene information allows for (a) improving the detection performance and (b) for reducing the model complexity; both on reduced computational costs! These benefits are demonstrated for two different real-world tasks (i.e., person and car detection). In particular, we apply two different evaluation/update strategies (holistic, grid-based), where any suited online learner can be applied. In our case we demonstrate the proposed approaches for different applications and scenarios, clearly showing their benefits compared to generic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refer a classifier to as an oracle, if it has a high precision, even at a low recall, and can thus be used to generate new training samples.

  2. 2.

    http://www.cvg.rdg.ac.uk/PETS2006/ (November 30, 2012).

  3. 3.

    http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html (November 30, 2012).

  4. 4.

    This particular task was chosen as implementations of existing approaches as well as a number of benchmark datasets are publicly available.

  5. 5.

    http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1 (November 30, 2012).

References

  1. Abney S (2002) Bootstrapping. In: Proc annual meeting of the association for computational linguistics, pp 360–367

    Google Scholar 

  2. Agarwal S, Awan A, Roth D (2004) Learning to detect objects in images via a sparse, part-based representation. IEEE Trans Pattern Anal Mach Intell 26(11):1475–1490

    Article  Google Scholar 

  3. Andrews S, Tsochantaridis I, Hofmann T (2003) Support vector machines for multiple-instance learning. In: Advances in neural information processing systems, pp 561–568

    Google Scholar 

  4. Babenko B, Yang M-H, Belongie S (2009) Visual tracking with online mulitple instance learning. In: Proc IEEE conf on computer vision and pattern recognition

    Google Scholar 

  5. Balcan M-F, Blum A, Yang K (2004) Co-training and expansion: towards bridging theory and practice. In: Advances in neural information processing systems, pp 89–96

    Google Scholar 

  6. Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training

    Google Scholar 

  7. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proc IEEE conf on computer vision and pattern recognition

    Google Scholar 

  8. Dietterich TG, Lathrop RH, Lozano-Pérez T (1997) Solving the multiple instance problem with axis-parallel rectangles. Artif Intell 89(1–2):31–71

    Article  MATH  Google Scholar 

  9. Dollár P, Wojek C, Schiele B, Perona P (2011) Pedestrian detection: an evaluation of the state of the art. IEEE Trans Pattern Anal Mach Intell 34(4):743–761

    Article  Google Scholar 

  10. Felzenszwalb P, McAllester D, Ramanan D (2008) A discriminatively trained, multiscale, deformable part model. In: Proc IEEE conf on computer vision and pattern recognition

    Google Scholar 

  11. Freund Y, Schapire RE (1995) A decision-theoretic generalization of on-line learning and an application to boosting. In: Proc European conf on computational learning theory, pp 23–37

    Chapter  Google Scholar 

  12. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55:119–139

    Article  MathSciNet  MATH  Google Scholar 

  13. Friedman J (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232

    Article  MATH  Google Scholar 

  14. Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28(2):337–374

    Article  MathSciNet  MATH  Google Scholar 

  15. Goldberg AB, Li M, Zhu X (2008) Online manifold regularization: a new learning setting and empirical study. In: Proc European conf on machine learning and knowledge discovery in databases, vol I, pp 393–407

    Chapter  Google Scholar 

  16. Grabner H, Bischof H (2006) On-line boosting and vision. In: Proc IEEE conf on computer vision and pattern recognition

    Google Scholar 

  17. Grabner H, Roth PM, Bischof H (2007) Is pedestrian detection really a hard task? In: Proc IEEE workshop on performance evaluation of tracking and surveillance

    Google Scholar 

  18. Hoiem D, Efros AA, Hebert M (2006) Putting objects in perspective. In: Proc IEEE conf on computer vision and pattern recognition

    Google Scholar 

  19. Javed O, Ali S, Shah M (2005) Online detection and classification of moving objects using progressively improving detectors. In: Proc IEEE conf on computer vision and pattern recognition

    Google Scholar 

  20. Leibe B, Leonardis A, Schiele B (2008) Robust object detection with interleaved categorization and segmentation. Int J Comput Vis 77(1–3):259–289

    Article  Google Scholar 

  21. Leistner C, Amir R, Saffari AA, Roth PM, Bischof H (2009) On robustness of on-line boosting—a competitive study. In: Proc IEEE on-line learning for computer vision workshop

    Google Scholar 

  22. Levin A, Viola P, Freund Y (2003) Unsupervised improvement of visual detectors using co-training. In: Proc IEEE int’l conf on computer vision

    Google Scholar 

  23. Li M, Sethi IK (2006) Confidence-based active learning. IEEE Trans Pattern Anal Mach Intell 28(8):1251–1261

    Article  Google Scholar 

  24. Li L-J, Wang G, Fei-Fei L (2007) Optimol: automatic online picture collection via incremental model learning. In: Proc IEEE conf on computer vision and pattern recognition

    Google Scholar 

  25. Liu R, Cheng J, Lu H (2009) A robust boosting tracker with minimum error bound in a co-training framework. In: Proc IEEE int’l conf on computer vision

    Google Scholar 

  26. Mason L, Baxter J, Bartlett P, Frean M (1999) Functional gradient techniques for combining hypotheses. In: Advances in large margin classifiers. MIT Press, Cambridge, pp 221–247

    Google Scholar 

  27. McFarlane NJB, Schofield CP (1995) Segmentation and tracking of piglets. Mach Vis Appl 8(3):187–193

    Article  Google Scholar 

  28. Nair V, Clark JJ (2004) An unsupervised, online learning framework for moving object detection. In: Proc IEEE conf on computer vision and pattern recognition

    Google Scholar 

  29. Park J-H, Choi Y-K (1996) On-line learning for active pattern recognition. IEEE Signal Process Lett 3(11):301–303

    Article  Google Scholar 

  30. Rosenberg C, Hebert M, Schneiderman H (2005) Semi-supervised self-training of object detection models. In: IEEE workshop on applications of computer vision

    Google Scholar 

  31. Roth PM, Bischof H (2008) Conservative learning for object detectors. Machine learning techniques for multimedia. Springer, Berlin

    Google Scholar 

  32. Roth PM, Sternig S, Grabner H, Bischof H (2009) Classifier grids for robust adaptive object detection. In: Proc IEEE conf on computer vision and pattern recognition

    Google Scholar 

  33. Schapire RE (1990) The strength of weak learnability. Mach Learn 5(2):197–227

    Google Scholar 

  34. Schapire RE, Singer Y (2000) Boostexter: a boosting-based system for text categorization. Mach Learn 39(2/3):135–168

    Article  MATH  Google Scholar 

  35. Skočaj D, Leonardis A (2008) Incremental and robust learning of subspace representations. Image Vis Comput 26(1):27–38

    Article  Google Scholar 

  36. Sternig S, Godec M, Roth PM, Bischof H (2010) TransientBoost: on-line boosting with transient data. In: Proc IEEE online learning for computer vision workshop (in conj CVPR)

    Google Scholar 

  37. Sternig S, Roth PM, Bischof H (2012) On-line inverse multiple instance boosting for classifier grids. Pattern Recognit Lett 33(1):890–897

    Article  Google Scholar 

  38. Tieu K, Viola P (2000) Boosting image retrieval. In: Proc IEEE conf on computer vision and pattern recognition, vol I, pp 228–235

    Google Scholar 

  39. Turtinen M, Pietikänien M (2005) Labeling of textured data with co-training and active learning. In: Proc workshop on texture analysis and synthesis, pp 137–142

    Google Scholar 

  40. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  41. Viola P, Jones MJ (2001) Rapid object detection using a boosted cascade of simple features. In: Proc IEEE conf on computer vision and pattern recognition

    Google Scholar 

  42. Viola P, Jones MJ, Snow D (2003) Detecting pedestrians using patterns of motion and appearance. In: Proc IEEE int’l conf on computer vision

    Google Scholar 

  43. Viola P, Platt JC, Zhang C (2005) Multiple instance boosting for object detection. In: Advances in neural information processing systems

    Google Scholar 

  44. Wei W, Zhou Z-H (2007) Analyzing co-training style algorithms. In: Proc European conf on machine learning, pp 454–465

    Google Scholar 

  45. Wu B, Nevatia R (2005) Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors. In: Proc IEEE int’l conf on computer vision

    Google Scholar 

  46. Wu B, Nevatia R (2007) Improving part based object detection by unsupervised, online boosting. In: Proc IEEE conf on computer vision and pattern recognition

    Google Scholar 

  47. Yan R, Yang J, Hauptmann A (2003) Automatically labeling video data using multi-class active learning. In: Proc IEEE int’l conf on computer vision, vol I, pp 516–523

    Chapter  Google Scholar 

  48. Zhu Q, Avidan S, Cheng K-T (2005) Learning a sparse, corner-based representation for background modelling. In: Proc IEEE int’l conf on computer vision, vol I, pp 678–685

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Austrian Science Foundation (FWF) project Advanced Learning for Tracking and Detection in Medical Workflow Analysis (I535-N23) and by the Austrian Research Promotion Agency (FFG) projects SHARE (831717) in the IV2Splus program and MobiTrick (8258408) in the FIT-IT program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Roth, P.M., Sternig, S., Bischof, H. (2013). Learning Object Detectors in Stationary Environments. In: Farinella, G., Battiato, S., Cipolla, R. (eds) Advanced Topics in Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5520-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5520-1_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5519-5

  • Online ISBN: 978-1-4471-5520-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics