Skip to main content

Efficient Loopy Belief Propagation Using the Four Color Theorem

  • Chapter
Advanced Topics in Computer Vision

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Recent work on early vision such as image segmentation, image denoising, stereo matching, and optical flow uses Markov Random Fields. Although this formulation yields an NP-hard energy minimization problem, good heuristics have been developed based on graph cuts and belief propagation. Nevertheless both approaches still require tens of seconds to solve stereo problems on recent PCs. Such running times are impractical for optical flow and many image segmentation and denoising problems and we review recent techniques for speeding them up. Moreover, we show how to reduce the computational complexity of belief propagation by applying the Four Color Theorem to limit the maximum number of labels in the underlying image segmentation to at most four. We show that this provides substantial speed improvements for large inputs, and this for a variety of vision problems, while maintaining competitive result quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal S, Belongie S (2002) On the non-optimality of four color coding of image partitions. In: IEEE international conference on image processing

    Google Scholar 

  2. Besag J (1986) On the statistical analysis of dirty pictures Julian Besag (with discussion). J R Stat Soc B 48(3):259–302

    MathSciNet  MATH  Google Scholar 

  3. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23:1222–1239

    Article  Google Scholar 

  4. Chou PB, Brown CM (1990) The theory and practice of Bayesian image labeling. Int J Comput Vis 4(3):185–210

    Article  Google Scholar 

  5. Coughlan J, Shen H (2007) Dynamic quantization for belief propagation in sparse spaces. Comput Vis Image Underst 106(1):47–58

    Article  Google Scholar 

  6. Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59:167–181

    Article  Google Scholar 

  7. Felzenszwalb PF, Huttenlocher DP (2006) Efficient belief propagation for early vision. Int J Comput Vis 70:261–268

    Article  Google Scholar 

  8. Franklin P (1934) A six colour problem. J Math Phys 13:363–369

    Google Scholar 

  9. Gallian JA (2011) A dynamic survey of graph labeling. Electron J Comb 18:1–256

    Google Scholar 

  10. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6(6):721–741

    Article  MATH  Google Scholar 

  11. Greig DM, Porteous BT, Seheult AH (1989) Exact maximum a posteriori estimation for binary images. J R Stat Soc B 51:271–279

    Google Scholar 

  12. Groetzsch H (1958/1959) Zur Theorie der diskreten Gebilde. VII. Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel. (German) Wiss Z, Martin-Luther-Univ Halle-Wittenb, Math-Natwiss Reihe 8:109–120

    Google Scholar 

  13. Kschischang FR, Frey BJ, Loeliger H-A (2001) Factor graphs and the sum-product algorithm. IEEE Trans Inf Theory 47:498–519

    Article  MathSciNet  MATH  Google Scholar 

  14. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: International conference on computer vision

    Google Scholar 

  15. Pearl J (1982) Reverend Bayes on inference engines: a distributed hierarchical approach. In: Second national conference on artificial intelligence, AAAI-82, Pittsburgh, PA. AAAI Press, Menlo Park, pp 133–136

    Google Scholar 

  16. Potetz B, Lee TS (2008) Efficient belief propagation for higher-order cliques using linear constraint nodes. Comput Vis Image Underst 112(1):39–54

    Article  Google Scholar 

  17. Robertson N, Sanders DP, Seymour PD, Thomas R (1996) A new proof of the four colour theorem. Electron Res Announc Am Math Soc 2:17–25

    Article  MathSciNet  Google Scholar 

  18. Rother C, Kolmogorov V, Lempitsky V, Szummer M (2007) Optimizing binary MRFs via extended roof duality. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  19. Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vis 47:7–42

    Article  MATH  Google Scholar 

  20. Sudderth E, Ihler A, Freeman W, Willsky A (2003) Nonparametric belief propagation. In: Conference on computer vision and pattern recognition

    Google Scholar 

  21. Sun J, Zheng NN, Shum HY (2003) Stereo matching using belief propagation. IEEE Trans Pattern Anal Mach Intell 25:787–800

    Article  Google Scholar 

  22. Szeliski R, Zabih R, Scharstein D, Veksler O, Kolmogorov V, Agarwala A, Tappen M, Rother C (2008) A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Trans Pattern Anal Mach Intell 30(6):1068–1080

    Article  Google Scholar 

  23. Tappen MF, Freeman WT (2003) Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters. In: International conference on computer vision

    Google Scholar 

  24. Timofte R, Van Gool L (2010) Four color theorem for fast early vision. In: Asian conference on computer vision

    Google Scholar 

  25. Tombari F, Mattoccia S, Di Stefano L, Addimanda E (2008) Near real-time stereo based on effective cost aggregation. In: International conference on pattern recognition

    Google Scholar 

  26. Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the Mumford and Shah model. Int J Comput Vis 50:271–293

    Article  MATH  Google Scholar 

  27. Wainwright M, Jaakkola T, Willsky A (2005) Map estimation via agreement on trees: message-passing and linear programming. IEEE Trans Inf Theory 51:3697–3717

    Article  MathSciNet  Google Scholar 

  28. Wang C, Paragios N (2012) Markov random fields in vision perception: a survey. INRIA research report, 25 September (2012), pp 1–42

    Google Scholar 

  29. Weiss Y, Freeman WT (2001) On the optimality of solutions of the max-product belief propagation algorithm in arbitrary graphs. IEEE Trans Inf Theory 47:723–735

    Article  MathSciNet  Google Scholar 

  30. Weisstein EW (2012). Map coloring. From MathWorld—a Wolfram web resource. http://mathworld.wolfram.com/MapColoring.html

  31. Welsh DJA, Powell MB (1967) An upper bound for the chromatic number of a graph and its application to timetabling problems. Comput J 10(1):85–86

    Article  MATH  Google Scholar 

  32. Yang Q, Wang L, Ahuja N (2010) A constant-space belief propagation algorithm for stereo matching. In: IEEE conference on computer vision and pattern recognition, pp 1458–1465

    Google Scholar 

  33. Yanover C, Weiss Y (2003) Finding the M most probable configurations using loopy belief propagation. In: NIPS

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Flemish Hercules Foundation project RICH and the Flemish iMinds project on Future Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Timofte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Timofte, R., Van Gool, L. (2013). Efficient Loopy Belief Propagation Using the Four Color Theorem. In: Farinella, G., Battiato, S., Cipolla, R. (eds) Advanced Topics in Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5520-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5520-1_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5519-5

  • Online ISBN: 978-1-4471-5520-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics