Heart Failure and Pulmonary Hypertension in Women

  • Andrew Darlington
  • Jacinta Green
  • Gladys P. Velarde


Heart failure is characterized as a syndrome caused by cardiac dysfunction, leading to neurohormonal and circulatory abnormalities, resulting in the characteristic signs/symptoms of fluid retention, shortness of breath, and fatigue, particularly on exertion [1]. The worldwide prevalence and incidence continues to rise over time and is rapidly approaching epidemic proportions. In the United States alone, there are an estimated six million people living with heart failure and 670,000 new cases diagnosed each year, of which 320,000 of these are women [2]. This has led to an annual expenditure approaching nearly 39 billion dollars [2, 3].


Heart Failure Pulmonary Hypertension Interstitial Lung Disease Angiotensin Converting Enzyme Inhibitor Obstructive Coronary Artery Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Alan Miller, MD

Professor of Medicine University of Florida College of Medicine – Jacksonville, Jacksonville, Florida, US


  1. 1.
    Lindenfeld J, Albert NM, Boehmer JP, et al. HFSA 2010 comprehensive heart failure practice guidelines. J Card Fail. 2010;16(6):1–194.CrossRefGoogle Scholar
  2. 2.
    Lloyd-Jones DM. Cardiovascular risk prediction: basic concepts, current status, and future directions. Circulation. 2010;15:1768–77.CrossRefGoogle Scholar
  3. 3.
    Lee WC, Chavez YE, Baker T, et al. Economic burden of heart failure: a summary of recent literature. Heart Lung. 2004;6:362–71.CrossRefGoogle Scholar
  4. 4.
    Owan TE, Hodge DO, Herges RM, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;3:251–9.CrossRefGoogle Scholar
  5. 5.
    Bhatia RS, Tu JV, Lee DS, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med. 2006;3:260–9.CrossRefGoogle Scholar
  6. 6.
    Lee DS, Gona P, Vasan RS, et al. Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the framingham heart study of the national heart, lung, and blood institute. Circulation. 2009;24:3070–7.CrossRefGoogle Scholar
  7. 7.
    Piro M, Della Bona R, Abbate A, et al. Sex-related differences in remodeling. J Am Coll Cardiol. 2010;11:1057–65.CrossRefGoogle Scholar
  8. 8.
    Borlaug BA, Lam CS, Roger VL, Rodeheffer RJ, Redfield MM. Contractility and ventricular systolic stiffening in hypertensive heart disease insights into the pathogenesis of heart failure with preserved ejection fraction. J Am Coll Cardiol. 2009;5:410–8.CrossRefGoogle Scholar
  9. 9.
    Redfield MM, Jacobsen SJ, Borlaug BA, et al. Age and gender-related ventricular-vascular stiffening: a community-based study. Circulation. 2005;15:2254–62.CrossRefGoogle Scholar
  10. 10.
    College of Cardiology Foundation/American Heart Association Task Force on Practice. 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):240–327.Google Scholar
  11. 11.
    Ghali JK, Krause-Steinrauf HJ, Adams KF, et al. Gender differences in advanced heart failure: insights from the BEST study. J Am Coll Cardiol. 2003;12:2128–34.CrossRefGoogle Scholar
  12. 12.
    Levy D, Larson MG, Vasan RS, et al. The progression from hypertension to congestive heart failure. JAMA. 1996;20:1557–62.CrossRefGoogle Scholar
  13. 13.
    Peterson LR, Herrero P, Schechtman KB, et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation. 2004;18:2191–6.CrossRefGoogle Scholar
  14. 14.
    Ho KK, Anderson KM, Kannel WB, et al. Survival after the onset of congestive heart failure in Framingham Heart Study subjects. Circulation. 1993;1:107–15.CrossRefGoogle Scholar
  15. 15.
    Drazner MH, Rame JE, Stevenson LW, et al. Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. N Engl J Med. 2001;8:574–81.CrossRefGoogle Scholar
  16. 16.
    Smith GL, Lichtman JH, Bracken M, et al. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J Am Coll Cardiol. 2006;10:1987–96.CrossRefGoogle Scholar
  17. 17.
    Lee WH, Packer M. Prognostic importance of serum sodium concentration and its modification by converting-enzyme inhibition in patients with severe chronic heart failure. Circulation. 1986;73:257–67.PubMedCrossRefGoogle Scholar
  18. 18.
    Tang WH, Tong W, Jain A, et al. Evaluation and long-term prognosis of new-onset, transient, and persistent anemia in ambulatory patients with chronic heart failure. J Am Coll Cardiol. 2008;5:569–76.CrossRefGoogle Scholar
  19. 19.
    McCullough PA, Nowak RM, McCord J, et al. B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: analysis from Breathing Not Properly (BNP) Multinational Study. Circulation. 2002;4:416–22.CrossRefGoogle Scholar
  20. 20.
    Cauliez B, Berthe MC, Lavoinne A. Brain natriuretic peptide: physiological, biological and clinical aspects. Ann Biol Clin (Paris). 2005;1:15–25.Google Scholar
  21. 21.
    O’Donoghue M, Chen A, Baggish AL, et al. The effects of ejection fraction on N-terminal ProBNP and BNP levels in patients with acute CHF: analysis from the ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) study. J Card Fail. 2005;5:S9–14.CrossRefGoogle Scholar
  22. 22.
    Koster NK, Reddy YM, Schima SM, et al. Gender-specific echocardiographic findings in nonagenarians with cardiovascular disease. Am J Cardiol. 2010;2:273–6.CrossRefGoogle Scholar
  23. 23.
    Swedberg K, Kjekshus J. Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). Am J Cardiol. 1988;2:60A–6.CrossRefGoogle Scholar
  24. 24.
    Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med. 1991;5:293–302.Google Scholar
  25. 25.
    Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 1992;10:669–77.CrossRefGoogle Scholar
  26. 26.
    Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. The SOLVD Investigators. N Engl J Med. 1992;327(10):685–91.Google Scholar
  27. 27.
    Granger CB, McMurray JJ, Yusuf S, CHARM Investigators and Committees, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet. 2003;362:772–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Pfeffer MA, McMurray JJ, Velazquez EJ, Valsartan in Acute Myocardial Infarction Trial Investigators, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med. 2003;49:1893–906.CrossRefGoogle Scholar
  29. 29.
    Majahalme SK, Baruch L, Aknay N, et al. Comparison of treatment benefit and outcome in women versus men with chronic heart failure (from the Valsartan Heart Failure Trial). Am J Cardiol. 2005;95:529–32.PubMedCrossRefGoogle Scholar
  30. 30.
    The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomized trial. CIBIS II Investigators and Committees. Lancet. 1999;353:9–13.Google Scholar
  31. 31.
    Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). MERIT-HF Study Group. Lancet. 1999;353:2001–7.Google Scholar
  32. 32.
    Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001;344:1651–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Ghali JK, Piña IL, Gottlieb SS, Deedwania PC, Wikstrand JC. MERIT-HF Study Group. Metoprolol CR/XL in female patients with heart failure: analysis of the experience in Metoprolol Extended-Release Randomized Intervention Trial in Heart Failure (MERIT-HF). Circulation. 2002;13:1585–91.CrossRefGoogle Scholar
  34. 34.
    Taylor AL, Ziesche S, Yancy C, African-American Heart Failure Trial Investigators, et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med. 2004;20:2049–57.CrossRefGoogle Scholar
  35. 35.
    Taylor AL, Lindenfeld J, Ziesche S, A-HeFT Investigators, et al. Outcomes by gender in the African-American Heart Failure Trial. J Am Coll Cardiol. 2006;11:2263–7.CrossRefGoogle Scholar
  36. 36.
    Young MJ, Funder JW. Mineralocorticoid receptors and pathophysiological roles for aldosterone in the cardiovascular system. J Hypertens. 2002;20:1465–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Pitt B, Zannad F, Remme WJ. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709–17.PubMedCrossRefGoogle Scholar
  38. 38.
    Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.PubMedCrossRefGoogle Scholar
  39. 39.
    The Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med. 1997;336:525–33.CrossRefGoogle Scholar
  40. 40.
    Rathore SS, Wang Y, Krumholz HM. Sex-based differences in the effect of digoxin for the treatment of heart failure. N Engl J Med. 2002;347:1403–11.PubMedCrossRefGoogle Scholar
  41. 41.
    Adams KF, Patterson JH, Gattis WA, et al. Relationship of serum digoxin concentration to mortality and morbidity in women in the digitalis investigation group trial: a retrospective analysis. J Am Coll Cardiol. 2005;46:497–504.PubMedCrossRefGoogle Scholar
  42. 42.
    Smith GL, Masoudi FA, Vaccarino V, et al. Outcomes in heart failure patients with preserved ejection fraction: mortality, readmission, and functional decline. J Am Coll Cardiol. 2003;41:1510–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Philbin EF, Rocco Jr TA, Lindenmuth NW, et al. Systolic versus diastolic heart failure in community practice: clinical features, outcomes, and the use of angiotensin-converting enzyme inhibitors. Am J Med. 2000;109:605–13.PubMedCrossRefGoogle Scholar
  44. 44.
    ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). Circulation. 2005;112:e154–e235.Google Scholar
  45. 45.
    Epstein AE, DiMarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormal- ities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices). J Am Coll Cardiol. 2008;51:e1–62.PubMedCrossRefGoogle Scholar
  46. 46.
    Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–50.PubMedCrossRefGoogle Scholar
  47. 47.
    Arshad A, Moss AJ, Foster E, et al. Cardiac resynchronization therapy is More effective in women than in men. The MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy) trial. J Am Coll Cardiol. 2011;57:813–20.PubMedCrossRefGoogle Scholar
  48. 48.
    Tsuchihashi K, Ueshima K, Uchida T, Angina Pectoris Myocardial Infarction Investigations Japan, et al. Transient left ventricular apical ballooning without coronary artery stenosis: a novel heart syndrome mimicking acute myocardial infarction. J Am Coll Cardiol. 2001;38:11–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Dote K, Sato H, Uchindo A, et al. Myocardial stunning due to multivessel spasms: a review of 5 cases. J Cardiol. 1991;21:203–14.PubMedGoogle Scholar
  50. 50.
    Wittstein IS, Thiemann DR, Lima JAC, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352:539–48.PubMedCrossRefGoogle Scholar
  51. 51.
    Ueyama T, Kasamatsu K, Hano T, et al. Emotional stress induces transient left ventricular hypocontraction in the rat via activation of cardiac adrenoceptors: a possible animal model of “tako-tsubo” cardiomyopathy. Circ J. 2002;7:712–3.CrossRefGoogle Scholar
  52. 52.
    Kneale BJ, Chowienczyk PJ, Brett SE, Coltart DJ, Ritter JM. Gender differences in sensitivity to adrenergic agonists of forearm resistance vasculature. J Am Coll Cardiol. 2000;36:1233–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Movahed MR, Donohue D. Review: transient left ventricular apical ballooning, broken heart syndrome, ampulla cardiomyopathy, atypical apical ballooning, or Tako-Tsubo cardiomyopathy. Cardiovasc Revasc Med. 2007;4:289–92.CrossRefGoogle Scholar
  54. 54.
    Bybee KA, Kara T, Prasad A, et al. Transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction. Ann Intern Med. 2004;141:858–65.PubMedCrossRefGoogle Scholar
  55. 55.
    Shimizu M, Kato Y, Masai H, et al. Recurrent episodes of Takotsubo-like transient apical ballooning occurring in different regions: a case report. J Cardiol. 2006;48:101–7.PubMedGoogle Scholar
  56. 56.
    Simonneau G, Robbins IM, Beghetti M. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009;54:S43–54.PubMedCrossRefGoogle Scholar
  57. 57.
    Humbert M, Sitbon O, Chaouat A, et al. Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med. 2006;173:1023–30.PubMedCrossRefGoogle Scholar
  58. 58.
    D’Alonzo GE, Borst RJ, Bergofsky EH, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115:343–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Guazzi M, Borlaug BA. Pulmonary hypertension due to left heart disease. Circulation. 2012;126:975–90.PubMedCrossRefGoogle Scholar
  60. 60.
    Piazza G, Goldhaber SZ. Chronic thromboembolic pulmonary hypertension. N Engl J Med. 2011;364:351–60.PubMedCrossRefGoogle Scholar
  61. 61.
    Galie N, Hoeper MM, Humbert M, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30:2493–537.PubMedCrossRefGoogle Scholar
  62. 62.
    Galie N, Ghofrani HA, Torbicki A, et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005;353(20):2148–57.PubMedCrossRefGoogle Scholar
  63. 63.
    Rubin LJ, Badesch DB, Barst RJ, et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med. 2002;12:896–903.CrossRefGoogle Scholar
  64. 64.
    Sitbon O, Humbert M, Jaïs X, et al. Long term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation. 2005;23:3105–11.CrossRefGoogle Scholar
  65. 65.
    Gomberg-Maitland M, Olschewski H. Prostacyclin therapies for the treatment of pulmonary arterial hypertension. Eur Respir J. 2008;4:891–901.CrossRefGoogle Scholar
  66. 66.
    Nagendran J, Archer SL, Soliman D, et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007;3:238–48.CrossRefGoogle Scholar
  67. 67.
    Galie N, Badesch D, Oudiz R, et al. Ambrisentan therapy for pulmonary arterial hypertension. J Am Coll Cardiol. 2005;3:529–35.CrossRefGoogle Scholar
  68. 68.
    Loyd JE, Butler MG, Foroud TM, et al. Genetic anticipation and abnormal gender ratio at birth in familial primary pulmonary hypertension. Am J Respir Crit Care Med. 1995;1:93–7.CrossRefGoogle Scholar
  69. 69.
    Austin ED, Cogan JD, West JD, et al. Alterations in estrogen metabolism: implications for higher penetrance of FPAH in females. Eur Respir J. 2009;5:1093–9.CrossRefGoogle Scholar
  70. 70.
    Chung L, Liu J, Parsons L, et al. Characterization of connective tissue disease associated pulmonary arterial hypertension from the REVEAL registry: identifying systemic sclerosis as a unique phenotype. Chest. 2010;6:1383–94.CrossRefGoogle Scholar
  71. 71.
    Moore LG, McMurtry IF, Reeves JT, et al. Effects of sex hormones on cardiovascular and hematologic responses to chronic hypoxia in rats. Proc Soc Exp Biol Med. 1978;4:658–62.CrossRefGoogle Scholar
  72. 72.
    Jones RD, English KM, Pugh PJ, et al. Pulmonary vasodilatory action of testosterone: evidence of a calcium antagonistic action. J Cardiovasc Pharmacol. 2002;6:814–23.CrossRefGoogle Scholar
  73. 73.
    Wagner JD, Kaplan JR, Burkman RT, et al. Reproductive hormones and cardiovascular disease: mechanism of action and clinical implications. Obstet Gynecol Clin North Am. 2002;3:475–93.CrossRefGoogle Scholar
  74. 74.
    Humbert M, Sitbon O, Yaici A, et al. Survival in incident and prevalent cohorts of patients with pulmonary arterial hypertension. Eur Respir J. 2010;3:549–55.CrossRefGoogle Scholar
  75. 75.
    Benza RL, Miller DP, Gomberg-Maitland M, et al. Predicting survival in pulmonary arterial hypertension. Insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation. 2010;2:164–72.CrossRefGoogle Scholar
  76. 76.
    Kawut SM, Al-Naamani N, Agerstrand C, et al. Determinants of right ventricular ejection fraction in pulmonary arterial hypertension. Chest. 2009;3:752–9.CrossRefGoogle Scholar
  77. 77.
    Carbillon L, Uzan M, Uzan S. Pregnancy, vascular tone, and maternal hemodynamics: a crucial adaptation. Obstet Gynecol Surv. 2000;55:574–81.PubMedCrossRefGoogle Scholar
  78. 78.
    Bedard E, Dimopoulos K, Gatzoulis MA, et al. Has there been any progress made on pregnancy outcomes among women with pulmonary arterial hypertension? Eur Heart J. 2009;3:256–65.Google Scholar
  79. 79.
    Howlader N, Noone AM, Krapcho M, et. al.,editors. SEER cancer statistics review, 1975–2009 (Vintage 2009 populations), National Cancer Institute. Bethesda. 2012. Retrieved Sept 7 2012.Google Scholar
  80. 80.
    Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97:2869–79.PubMedCrossRefGoogle Scholar
  81. 81.
    Jensen BV, Skovsgaard T, Nielsen SL. Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol. 2002;5:699–709.CrossRefGoogle Scholar
  82. 82.
    Tan-Chiu E, Yothers G, Romond E, et al. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol. 2005;23:7811–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the traztuzumab clinical trials experience. J Clin Oncol. 2002;5:1215–21.CrossRefGoogle Scholar
  84. 84.
    Rutqvist LE, Rose C, Cavallin-Stahl E. A systematic overview of radiation therapy effects in breast cancer. Acta Oncol. 2003;42:532–45.PubMedCrossRefGoogle Scholar
  85. 85.
    Stewart JR, Fajardo LF, Gillette SM, et al. Radiation injury to the heart. Int J Radiat Oncol Biol Phys. 1995;31:1205–11.PubMedCrossRefGoogle Scholar
  86. 86.
    Elkayam U, Tummala PP, Rao K, et al. Maternal and fetal outcomes of subsequent pregnancies in women with peripartum cardiomyopathy. N Engl J Med. 2001;344:1567–71.PubMedCrossRefGoogle Scholar
  87. 87.
    Demakis JG, Rahimtoola SH, et al. Natural course of peripartum cardiomyopathy. Circulation. 1971;44:1053–61.PubMedCrossRefGoogle Scholar
  88. 88.
    Lund A, Mancini D. Heart failure in women. Med Clin N Am. 2004;88:1321–45.PubMedCrossRefGoogle Scholar
  89. 89.
    Sharkey SW. Takotsubo cardiomyopathy: natural history. Heart Fail Clin. 2013;9:123–36.PubMedCrossRefGoogle Scholar
  90. 90.
    The Criteria Committee of the New York Heart Association. Diseases of the heart and blood vessels: nomenclature and criteria for diagnosis. 6th ed. Boston: Little Brown; 1964.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Andrew Darlington
    • 1
  • Jacinta Green
    • 1
  • Gladys P. Velarde
    • 1
  1. 1.Division of CardiologyUniversity of Florida College of Medicine-JacksonvilleJacksonvilleUSA

Personalised recommendations