Skip to main content

The Arnold Conjecture and the Floer Equation

  • Chapter
Morse Theory and Floer Homology

Part of the book series: Universitext ((UTX))

  • 7160 Accesses

Abstract

We state the Arnold conjecture, which gives a lower bound for the number of fixed points of certain Hamiltonian diffeomorphisms. We then identify these fixed points with periodic orbits of Hamiltonian systems and with critical points of the “action functional” a function on the space of the contractible loops on the symplectic manifold, as well as the differential equation defining the flow of the gradient of this functional, called the Floer equation. This is a partial derivatives equation because it involves both the loop’s variable and that of the gradient’s flow. We begin studying the space of solutions of this equation by showing a compactness property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We saw in Remark 4.4.5 that the minimal number of critical points of a function may be less than the minimal number of critical points of a Morse function.

  2. 2.

    This means that the base point of the loop is not fixed. Moreover, the homotopies between these loops are free.

  3. 3.

    This is why this functional is called .

  4. 4.

    See also Exercise 27 on p. 523.

  5. 5.

    See also Exercise 30 on p. 524 where the nondegeneracy assumption is left out.

  6. 6.

    See Section C.1.

  7. 7.

    This expression refers to the ability to raise yourself, to levitate, by just pulling on your bootstraps. In general, in this book it refers to what the French call the “elliptic regularity”, where a weak solution, in the sense of distributions, of a partial differential equation is automatically a function. See Appendix C.

  8. 8.

    As in Morse theory, the nondegeneracy translates into transversality.

  9. 9.

    This is where the nondegeneracy is used.

  10. 10.

    This is a classical lemma in this theory. It seems that its origin lies with Ekeland. The beginning of Chapter iv of his book [26] contains variations on this theme.

  11. 11.

    See, for example, [64].

  12. 12.

    See for example [45, Chapter V].

  13. 13.

    For the theory of covers, we refer to [4].

  14. 14.

    The maximal radius of the disks of such a fiber bundle is the injectivity radius of the Riemann manifold W.

References

  1. Arnold, V.I.: Sur une propriété topologique des applications globalement canoniques de la mécanique classique. C. R. Acad. Sci. Paris 261, 3719–3722 (1965)

    MathSciNet  Google Scholar 

  2. Arnold, V.I.: First steps in symplectic topology. Russ. Math. Surv. 41, 1–21 (1986)

    Article  Google Scholar 

  3. Audin, M.: Topologie: Revêtements et groupe fondamental. ULP, Strasbourg (2004). Cours de Magistère, 2e année, http://www-irma.u-strasbg.fr/~maudin/courstopalg.pdf

  4. Ekeland, I.: Convexity Methods in Hamiltonian Mechanics. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  5. Floer, A.: A relative Morse index for the symplectic action. Commun. Pure Appl. Math. 41, 393–407 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Floer, A.: Morse theory for Lagrangian intersections. J. Differ. Geom. 28, 513–547 (1988)

    MathSciNet  MATH  Google Scholar 

  7. Floer, A.: Symplectic fixed points and holomorphic spheres. Commun. Math. Phys. 120, 575–611 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Floer, A.: Witten’s complex and infinite dimensional Morse theory. J. Differ. Geom. 30, 207–221 (1989)

    MathSciNet  MATH  Google Scholar 

  9. Gromov, M.: Pseudo-holomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lafontaine, J.: Introduction aux Variétés Différentielles. Presses Universitaires de Grenoble, Grenoble (1996)

    MATH  Google Scholar 

  11. Latour, F.: Existence de 1-formes fermées non singulières dans une classe de cohomologie de Rham. Publ. Math. IHÉS 80, 135–194 (1994)

    Article  MathSciNet  Google Scholar 

  12. Laudenbach, F.: Symplectic geometry and Floer homology, pp. 1–50. Sociedade Brasileira de Matemática (2004)

    Google Scholar 

  13. Pansu, P.: Compactness. In: [7], pp. 233–249

    Google Scholar 

  14. Rudin, W.: Analyse Réelle et Complexe. Masson, Paris (1975)

    MATH  Google Scholar 

  15. Salamon, D.: Lectures on Floer homology. In: Eliashberg, Y., Traynor, L. (eds.) Symplectic Topology. I.A.S./Park City Math. Series. Am. Math. Soc., Providence (1999)

    Google Scholar 

  16. Schwarz, M.: Morse Homology. Birkhäuser, Basel (1993)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Audin, M., Damian, M. (2014). The Arnold Conjecture and the Floer Equation. In: Morse Theory and Floer Homology. Universitext. Springer, London. https://doi.org/10.1007/978-1-4471-5496-9_6

Download citation

Publish with us

Policies and ethics