Skip to main content

Spacecraft-Manipulator Systems

  • Chapter
Vehicle-Manipulator Systems

Abstract

Due to the extreme costs of transporting humans to space, the use of robotic arms has been proposed as a safer and more cost-efficient solution to several tasks. Some remotely controlled robotic arms are operating in space, for example on the International Space Station, and several more will probably find their way into space in the very near future, on both space stations and satellites.

This chapter discusses the kinematics and dynamics of free-floating vehicle-manipulator systems in a free-fall environment. There are several challenges related to introducing manipulators in space that are not present in fixed-base manipulators on Earth. Firstly, there is no natural way to choose the inertial frame; because the base is floating we cannot simply choose the inertial frame to coincide with the base in the normal way. Secondly, the free-floating base complicates the kinematic modeling as the forward kinematics map is not only position dependent and non-holonomic behavior arises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abiko, S., & Yoshida, K. (2003). An effective control strategy of Japanese experimental module remote manipulator system (jemrms) using coupled and un-coupled dynamics. In Proceeding of the international symposium on artificial intelligence, robotics and automation in space: I-SAIRAS, NARA, Japan.

    Google Scholar 

  • Bryson, A. E. (1994). Control of spacecraft and aircraft. Princeton: Princeton University Press.

    Google Scholar 

  • Caccavale, F., & Siciliano, B. (2001). Quaternion-based kinematic control of redundant spacecraft/manipulator systems. In Proceedings of IEEE international conference on robotics and automation, Seoul, Korea.

    Google Scholar 

  • Dube, M., Bollea, D., Jones, W. R. Jr., Marchetti, M., & Jansen, M. J. (2003). A new synthetic hydrocarbon liquid lubricant for space applications. Tribology Letter, 15(1), 3–8.

    Article  Google Scholar 

  • Dubowsky, S., & Papadopoulos, E. (1993). The kinematics, dynamics and control of free-flying and free-floating space robotic systems. IEEE Transactions on Robotics and Automation, 9(5), 531–541.

    Article  Google Scholar 

  • From, P. J., Pettersen, K. Y., & Gravdahl, J. T. (2010). In Singularity-free dynamic equations of spacecraft-manipulator systems. International Astronautical Congress, Prague, Czech Republic.

    Google Scholar 

  • From, P. J., Pettersen, K. Y., & Gravdahl, J. T. (2011a). Singularity-free dynamic equations of spacecraft-manipulator systems. Acta Astronautica, 69(11–12), 1057–1065.

    Article  Google Scholar 

  • From, P. J., Pettersen, K. Y., & Gravdahl, J. T. (2011b). Singularity-free formulation of the dynamically equivalent manipulator mapping for space manipulators. In AIAA SPACE, Long Beach, California, USA.

    Google Scholar 

  • Inaba, N., & Oda, M. (2000). Autonomous satellite capture by a space robot: world first on-orbit experiment on a Japanese robot satellite ETS-vii. In Proceedings of IEEE international conference on robotics and automation (Vol. 2, pp. 1169–1174).

    Google Scholar 

  • Jekeli, C. (2000). Inertial navigation systems with geodetic applications. Walter De Gruyter Inc.

    Google Scholar 

  • Liang, B., Xu, Y., & Bergerman, M. (1997a). Dynamically equivalent manipulator for space manipulator system. 1. In Proceedings of IEEE international conference on robotics and automation (Vol. 4, pp. 2765–2770).

    Chapter  Google Scholar 

  • Liang, B., Xu, Y., & Bergerman, M. (1998). Mapping a space manipulator to a dynamically equivalent manipulator. ASME Journal of Dynamic Systems, Measurement, and Control, 120(1), 1–7.

    Article  Google Scholar 

  • Liang, B., Xu, Y., Bergerman, M., & Li, G. (1997b). Dynamically equivalent manipulator for space manipulator system. 2. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (Vol. 3, pp. 1493–1499).

    Google Scholar 

  • Liljebäck, P., Pettersen, K. Y., Stavdahl, Ø., & Gravdahl, J. T. (2013). Snake robots modelling, mechatronics, and control. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Meirovich, L., & Kwak, M. K. (1989). State equations for a spacecraft with maneuvering flexible appendages in terms of quasi-coordinates. Applied Mechanics Reviews, 42(11), 161–170.

    Article  MathSciNet  Google Scholar 

  • Nakamura, Y., & Mukherjee, R. (1993). Exploiting nonholonomic redundancy of free-flying space robots. IEEE Transactions on Robotics and Automation, 9(4), 499–506.

    Article  Google Scholar 

  • Nenchev, D., Umetani, Y., & Yoshida, K. (1992). Analysis of a redundant free-flying spacecraft/manipulator system. IEEE Transactions on Robotics and Automation, 8(1), 1–6.

    Article  Google Scholar 

  • Nenchev, D., Yoshida, K., Vichitkulsawat, P., & Uchiyama, M. (1999). Reaction null-space control of flexible structure mounted manipulator systems. IEEE Transactions on Robotics and Automation, 15(6), 1011–1023.

    Article  Google Scholar 

  • Newton, S. I. (1687). Philosophiæ Naturalis Principia Mathematica. Londini.

    Google Scholar 

  • Oda, M., Kibe, K., & Yamagata, F. (1996). Ets-vii, space robot in-orbit experiment satellite. In Proceedings of IEEE international conference on robotics and automation (Vol. 1, pp. 739–744).

    Chapter  Google Scholar 

  • Oriolo, G., & Nakamura, Y. (1991). Free-joint manipulators: motion control under second-order nonholonomic constraints. In Proceedings of IEEE international workshop on intelligent robots and systems, Osaka, Japan (pp. 1248–1253).

    Chapter  Google Scholar 

  • Parlaktuna, O., & Ozkan, M. (2004). Adaptive control of free-floating space manipulators using dynamically equivalent manipulator model. Robotics and Autonomous Systems, 46(3), 185–193.

    Article  Google Scholar 

  • Tatnall, A. R. L., Farrow, J. B., Bandecchi, M., & Francis, C. R. (2011). Spacecraft system engineering (4th ed.). Chichester: Wiley.

    Google Scholar 

  • Vafa, Z., & Dubowsky, S. (1987). On the dynamics of manipulators in space using the virtual manipulator approach. In Proceedings of IEEE international conference on robotics and automation, North Carolina (pp. 579–585).

    Google Scholar 

  • Yoshikawa, T., Harada, K., & Matsumoto, A. (1996). Hybrid position/force control of flexible-macro/rigid-micro manipulator systems. IEEE Transactions on Robotics and Automation, 12(4), 633–640.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

From, P.J., Gravdahl, J.T., Pettersen, K.Y. (2014). Spacecraft-Manipulator Systems. In: Vehicle-Manipulator Systems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-5463-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5463-1_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5462-4

  • Online ISBN: 978-1-4471-5463-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics