Skip to main content

Mini THR for Young Adult Hip Disease

  • Chapter
  • First Online:
The Young Adult Hip in Sport

Abstract

Active, high-demanding younger patients are the fastest growing segment of the hip replacement population. The increasing interest in bone-conserving designs has led, in the last decade, to the introduction of a number of smaller femoral components. In this chapter we summarize the current status of mini hip replacement, outline the reasons which drive the recent interest for smaller femoral implants, evaluate possible advantages over traditional total hip replacement and attempt to classify the different possible options. Because of the objective difficulties of cataloguing these implants according to biomechanical rationale and size we have gone for an anatomic classification based on three categories: femoral head designs, femoral neck designs and femoral metaphysis implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engh CA, Bobyn JD, Glassman AH. Porous-coated hip replacement: the factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg Br. 1987;69:45–55.

    PubMed  CAS  Google Scholar 

  2. Moreland JR, Bernstein ML. Femoral revision hip arthroplasty with uncemented, porous-coated stems. Clin Orthop Relat Res. 1995;319:141–50.

    PubMed  Google Scholar 

  3. Krauze A, Kaczmarek M, Marciniak J. Numerical analysis of femur in living and dead phase. J Achiev Mater Manuf Eng. 2008;26(2):163–6.

    Google Scholar 

  4. Engh CA, Bobyn JD. The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop Relat Res. 1988;231:7–28.

    PubMed  Google Scholar 

  5. Brow TE, Larso B, Shen F, Moskal JT. Thigh pain after cementless total hip arthroplasty: evaluation and management. J Am Acad Orthop Surg. 2002;10:385–92.

    Google Scholar 

  6. Khanuja HS, Vakil JJ, Goddard MS, Mont MA. Cementless femoral fixation in total hip arthroplasty. J Bone Joint Surg Am. 2011;93:500–9.

    Article  PubMed  Google Scholar 

  7. Lavernia C, D’Apuzzo M, Hernandez V, Lee D. Thigh pain in primary total hip arthroplasty: the effects of elastic moduli. J Arthroplasty. 2004;19(2):10–6.

    Article  PubMed  Google Scholar 

  8. Bourne RB, Rorabeck CH, Ghazal ME, Lee MH. Pain in the thigh following total hip replacement with a porous-coated anatomic prosthesis for osteoarthrosis. A five-year follow-up study. J Bone Joint Surg Am. 1994;76(10):1464–70.

    PubMed  CAS  Google Scholar 

  9. Kim YH. Titanium and cobalt-chrome cementless femoral stems of identical shape produce equal results. Clin Orthop Relat Res. 2004;427:148–56.

    Article  PubMed  Google Scholar 

  10. Hedley AK, Firestone TS. The use of an onlay cortical allograft strut for persistent thigh pain following cementless total hip replacement. Orthopedics. 1993;295:172–8.

    Google Scholar 

  11. Domb B, Hostin E, Mont MA, Hungerford DS. Cortical strut grafting for enigmatic thigh pain following total hip arthroplasty. Orthopedics. 2000;23:21–4.

    PubMed  CAS  Google Scholar 

  12. Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res. 1992;274:124–34.

    PubMed  Google Scholar 

  13. Trebse R, Milosev I, Kovac S, Mikek M, Pisot V. Poor results from the isoelastic total hip replacement: 14-17-year follow-up of 149 cementless prostheses. Acta Orthop. 2005;76(2):169–76.

    Article  PubMed  Google Scholar 

  14. Hofmann AA, Feign ME, Klauser W, VanGorp CC, Camargo MP. Cementless primary total hip arthroplasty with a tapered, proximally, porous-coated titanium prosthesis. A 4- to 8-year retrospective review. J Arthroplasty. 2000;15:833–9.

    Article  PubMed  CAS  Google Scholar 

  15. Deuel CR, Jamali AA, Stover SM, Hazelwood SJ. Alterations in femoral strain following hip resurfacing and total hip replacement. J Bone Joint Surg Br. 2009;91(1):124–30.

    PubMed  CAS  Google Scholar 

  16. Grammatopoulos G, Pandit H, Murray DW, Gill HS. The relationship between head-neck ratio and pseudotumour formation in metal-on-metal resurfacing arthroplasty of the hip. J Bone Joint Surg Br. 2010;92(11):1527–34.

    PubMed  CAS  Google Scholar 

  17. Morlock MM, Bishop N, Zustin J, Hahn M, Ruther W, Amling M. Modes of implant failure after hip resurfacing: morphological and wear analysis of 267 retrieval specimens. J Bone Joint Surg Am. 2008;90(3):89–95.

    Article  PubMed  Google Scholar 

  18. Walker PS, Blunn GW, de Prada D, Casas C. Design rationale and dimensional considerations for a femoral neck prosthesis. Clin Orthop Relat Res. 2005;441:313–9.

    Article  PubMed  Google Scholar 

  19. Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech. 1993;26:969–90.

    Article  PubMed  CAS  Google Scholar 

  20. McGrory BJ, Morrey BF, Cahalan TD, An KN, Cabanela ME. Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty. J Bone Joint Surg Br. 1995;77(6):865–9.

    PubMed  CAS  Google Scholar 

  21. Rösler J, Perka C. The effect of anatomical positional relationships on kinetic parameters after total hip replacement. Int Orthop. 2000;24(1):23–7.

    Article  PubMed  Google Scholar 

  22. Wiles P. The surgery of the osteo-arthritic hip. Br J Surg. 1957;45:485–97.

    Google Scholar 

  23. Steens W, Rosenbaum D, Goetze G, et al. Clinical and functional outcome of the thrust plate prosthesis: short-and medium-term results. Clin Biomech. 2003;18:647–54.

    Article  CAS  Google Scholar 

  24. Munting E, Smithz P, Van Sante N, et al. Effect of a stemless femoral implant for total hip arthroplasty on the bone mineral density of the proximal femur. J Arthroplasty. 1997;12:373–9.

    Article  PubMed  CAS  Google Scholar 

  25. McMinn DJ, Pradhan C, Ziaee H, Daniel J. Is mid-head resection a durable conservative option in the presence of poor femoral bone quality and distorted anatomy? Clin Orthop Relat Res. 2011;469(6):1589–97.

    Article  PubMed  Google Scholar 

  26. Rahman L, Muirhead-Allwood SK. The Birmingham mid-head resection arthroplasty – minimum two years clinical and radiological follow up; an independent single surgeon study. Hip Int. 2011;21(03):356–60.

    Article  PubMed  Google Scholar 

  27. Della Valle CF, Nunley RM, Raterman SJ, Barrack RL. Initial American experience with hip resurfacing following FDA approval. Clin Orthop Relat Res. 2009;467:72–8.

    Article  PubMed  Google Scholar 

  28. Murray DW, Grammatoupolos G, Gundle R. Hip resurfacing and pseudotumour. Hip Int. 2011;21(03):279–83.

    Article  PubMed  Google Scholar 

  29. Engh CA, O’Connor D, Jasty M, McGovern TF, Bobyn JD, Harris WH. Quantification of implant micromotion, strain shielding, and bone resorption with porous coated anatomic medullary locking femoral prostheses. Clin Orthop Relat Res. 1992;285:13–29.

    PubMed  Google Scholar 

  30. Whiteside LA, White SE, McCarthy DS. Effect of neck resection on torsional stability of cementless total hip replacement. Am J Orthop. 1995;24:766–70.

    PubMed  CAS  Google Scholar 

  31. Morrey B. Short-stemmed uncemented femoral component for primary hip arthroplasty. Clin Orthop Relat Res. 1989;249:169–75.

    PubMed  Google Scholar 

  32. Koch JC. The laws of bone architecture. Am J Anat. 1917;21:177–298.

    Article  Google Scholar 

  33. Fetto J, Bettinger P, Austin K, et al. Re-examination of hip biomechanics during unilateral stance. Am J Orthop. 1995;24(8):605–12.

    PubMed  CAS  Google Scholar 

  34. Morrey BF, Adams RA, Kessler M. A conservative femoral replacement for total hip arthroplasty. A prospective study. J Bone Joint Surg Br. 2000;82:952–8.

    Article  PubMed  CAS  Google Scholar 

  35. Synder M, Drobniewski M, Pruszczyski B, Sibiski M. Initial experience with short Metha stem implantation. Ortop Traumatol Rehabil. 2009;11(4):317–23.

    PubMed  Google Scholar 

  36. Ender SA, Machner A, Pap G, et al. Cementless CUT femoral neck prosthesis: increased rate of aseptic loosening after 5 years. Acta Orthop. 2007;78:616–21.

    Article  PubMed  Google Scholar 

  37. Röhrl SM, Li MG, Pedersen E, Ullmark G. Migration pattern of a short femoral neck preserving stem. Clin Orthop Relat Res. 2006;448:73–8.

    Article  PubMed  Google Scholar 

  38. Jerosch J, Grasselli C, Kothny PC, Litzkow D, Hennecke T. Reproduction of the anatomy (offset, CCD, leg length) with a modern short stem hip design – a radiological study. Z Orthop Unfall. 2011;12:100–12.

    Google Scholar 

  39. Götze C, Ehrenbrink J, Ehrenbrink H. Is there a bone-preserving bone remodelling in short-stem prosthesis? DEXA analysis with the Nanos total hip arthroplasty. Z Orthop Unfall. 2010;148(4):398–405.

    PubMed  Google Scholar 

  40. Lombardi AV, Berend KR, Adams JB. A short stem solution: through small portals. Orthopedics. 2009;32(9):663.

    Article  Google Scholar 

  41. Berend KR, Mallory TH, Lombardi Jr AV, Dodds KL, Adams JB. Tapered cementless femoral stem: difficult to place in varus but performs well in those rare cases. Orthopedics. 2007;30(4):295–7.

    PubMed  Google Scholar 

  42. Khalily C, Lester DK. Results of a tapered cementless femoral stem implanted in varus. J Arthroplasty. 2002;17(4):463–6.

    Article  PubMed  Google Scholar 

  43. Falez F, Casella F, Panegrossi G, Favetti F, Barresi C. Perspectives on metaphyseal conservative stems. J Orthop Traumatol. 2008;9(1):49–54.

    Article  PubMed  CAS  Google Scholar 

  44. Albanese CV, Rendine M, De Palma F, et al. Bone remodelling in THA: a comparative DXA scan study between conventional implants and a new stemless femoral component. A preliminary report. Hip Int. 2006;16(3):9–15.

    PubMed  Google Scholar 

  45. Ishaque BA, Donle E, Gils J, Wienbeck S, Basad E, Stürz H. Eight-year results of the femoral neck prosthesis ESKA-CUT. Z Orthop Unfall. 2009;147(2):158–65.

    PubMed  CAS  Google Scholar 

  46. Walker PS, Culligan SG, Hua J, Muirhead-Allwood SK, Bentley G. The effect of a lateral flare feature on uncemented hip stems. Hip Int. 1999;9:71–80.

    Google Scholar 

  47. Hua J, Walker PS. Closeness of fit of uncemented stems improves the strain distribution in the femur. J Orthop Res. 1995;13:339–46.

    Article  PubMed  CAS  Google Scholar 

  48. Jasty M, O’Connor DO, Henshaw RM, Harrigan TP, Harris WH. Fit of the uncemented femoral component and the use of cement influence the strain transfer to the femoral cortex. J Orthop Res. 1994;12:648–56.

    Article  PubMed  CAS  Google Scholar 

  49. Leali A, Fetto J, Insler H, Elfenbein D. The effect of a lateral flare feature on implant stability. Int Orthop. 2002;26:166–9.

    Article  PubMed  Google Scholar 

  50. Westphal FM, Bishop N, Püschel K, Morlock MM. Biomechanics of a new short-stemmed uncemented hip prosthesis: an in-vitro study in human bone. Hip Int. 2006;16(3):22–30.

    PubMed  Google Scholar 

  51. Ghera S, Pavan L. The DePuy Proxima hip: a short stem for total hip arthroplasty. Early experience and technical considerations. Hip Int. 2009;19(3):215–20.

    PubMed  Google Scholar 

  52. Santori FS, Santori N. Mid-term results of a custom-made short proximal loading femoral component. J Bone Joint Surg Br. 2010;92:1231–7.

    Article  PubMed  CAS  Google Scholar 

  53. Santori FS, Manili M, Fredella N, Tonci Ottieri M, Santori N. Ultra-short stems with proximal load transfer: clinical and radiographic results at five-year follow-up. Hip Int. 2006;16(l 3):31–9.

    PubMed  Google Scholar 

  54. Kim YH, Kim JS, Park JW, Joo JH. Total hip replacement with a short metaphyseal-fitting anatomical cementless femoral component in patients aged 70 years or older. J Bone Joint Surg Br. 2011;93(5):587–92.

    PubMed  Google Scholar 

  55. Tóth K, Mécs L, Kellermann P. Early experience with the Depuy Proxima short stem in total hip arthroplasty. Acta Orthop Belg. 2010;76(5):613–8.

    PubMed  Google Scholar 

  56. Renkawitz T, Santori FS, Grifka J, Valverde C, Morlock MM, Learmonth ID. A new short uncemented, proximally fixed anatomic femoral implant with a prominent lateral flare: design rationals and study design of an international clinical trial. BMC Musculoskelet Disord. 2008;4(9):147.

    Article  Google Scholar 

  57. Kim YH, Kim JS, Joo JH, Park JW. A prospective short-term outcome study of a short metaphyseal fitting total hip arthroplasty. J Arthroplasty. 2012;27(1):88–94.

    Article  PubMed  Google Scholar 

  58. Albanese CV, Santori FS, Pavan L, Learmonth ID. Periprosthetic DXA after total hip arthroplasty with short vs. ultra-short custom-made femoral stems: 37 patients followed for 3 years. Acta Orthop. 2009;80(3):291–7.

    Article  PubMed  Google Scholar 

  59. Kiratli BJ, Heiner JP, McBeath AA, Wilson MA. Determination of bone mineral density by dual x-ray absorptiometry in patients with uncemented total hip arthroplasty. J Orthop Res. 1992;10:836–44.

    Article  PubMed  CAS  Google Scholar 

  60. Engh Jr CA, McGovern TF, Bobyn JD, Harris WH. A quantitative evaluation of periprosthetic bone-remodelling after cementless total hip arthroplasty. J Bone Joint Surg Am. 1992;74:1009–20.

    PubMed  CAS  Google Scholar 

  61. Kilgus DJ, Shimaoka EE, Tipton JS, Eberle RW. Dual-energy x-ray absorptiometry measurement of bone mineral density around porous-coated cementless femoral implants: methods and preliminary results. J Bone Joint Surg Br. 1993;75:279–87.

    PubMed  CAS  Google Scholar 

  62. Karachalios T, Tsatsaronis C, Efraimis G, et al. The long-term clinical relevance of calcar atrophy caused by stress shielding in total hip arthroplasty: a 10-year, prospective, randomized study. J Arthroplasty. 2004;19:469–75.

    Article  PubMed  Google Scholar 

  63. Herrera A, Canales V, Anderson J, et al. Seven to 10 years follow up of an anatomic hip prosthesis: an international study. Clin Orthop Relat Res. 2004;423:129–37.

    Article  PubMed  Google Scholar 

  64. Geesink RGT. Osteoconductive coatings for total joint arthroplasty. Clin Orthop Relat Res. 2002;395:53–65.

    Article  PubMed  Google Scholar 

  65. Capello WN, D’Antonio JA, Geesink RG, Feinberg JR, Naughton M. Late remodeling around a proximally HA-coated tapered titanium femoral component. Clin Orthop Relat Res. 2009;467(1):155–65.

    Article  PubMed  Google Scholar 

  66. Berry DJ, Collins DC, Harmsen W, Xenos JS, Callaghan JJ, Engh CA, Jr, Engh CA, Sr. How does prosthesis fixation type alter long-term femoral cortical bone remodeling around THA? Presented as Poster 005 at the American Academy of Orthopedic Surgeons 2005 Annual Meeting, Washington, DC, 23–27 February 2005.

    Google Scholar 

  67. Briem D, Schneider M, Bogner N, Botha N, Gebauer M, Gehrke T, Schwantes B. Mid-term results of 155 patients treated with a collum femoris preserving (CFP) short stem prosthesis. Int Orthop. 2011;35(5):655–60.

    Article  PubMed  Google Scholar 

  68. Schmidt R, Gollwitzer S, Nowak TE, Nowak M, Häberle L, Kress A, Forst R, Müller LA. Periprosthetic femoral bone reaction after total hip arthroplasty with preservation of the collum femoris: CT-assisted osteodensitometry 1 and 3 years postoperatively. Orthopade. 2011;40(7):591–8.

    PubMed  CAS  Google Scholar 

  69. Santori N, Albanese CV, Learmonth ID, Santori FS. Bone preservation with a conservative metaphyseal loading implant. Hip Int. 2006;16(l 3):S16–21.

    Google Scholar 

  70. Leali A, Fetto J. Promising mid-term results of total hip arthroplasties using an uncemented lateral-flare hip prosthesis: a clinical and radiographic study. Int Orthop. 2007;31(6):845–9.

    Article  PubMed  Google Scholar 

  71. Lübbeke A, Garavaglia G, Barea C, Stern R, Peter R, Hoffmeyer P. Influence of patient activity on femoral osteolysis at five and ten years following hybrid total hip replacement. J Bone Joint Surg Br. 2011;93:456–63.

    PubMed  Google Scholar 

  72. Haddad FS, Thakrar RR, Hart AJ, Skinner JA, Nargol AV, et al. Metal-on-metal bearings: the evidence so far. J Bone Joint Surg Br. 2011;93(5):572–9.

    PubMed  CAS  Google Scholar 

  73. Stafford GH, Islam SU, Witt JD. Early to mid-term results of ceramic-on-ceramic total hip replacement: analysis of bearing-surface-related complications. J Bone Joint Surg Br. 2011;93(8):1017–20.

    PubMed  CAS  Google Scholar 

  74. Pipino F. Calderale PM biodynamic total hip prosthesis. Ital J Orthop Traumatol. 1987;13:289–97.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Santori MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Santori, N., Potestio, D., Santori, F.S. (2014). Mini THR for Young Adult Hip Disease. In: Haddad, F. (eds) The Young Adult Hip in Sport. Springer, London. https://doi.org/10.1007/978-1-4471-5412-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5412-9_24

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5411-2

  • Online ISBN: 978-1-4471-5412-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics