Titanium Porous-Coated Implant-Bone Interface in Total Joint Arthroplasty

  • Emilios E. Pakos
  • Theodoros Xenakis


Cementless fixation has been a principal method for fixation of orthopedic implants for decades. Accordingly, different rough and porous surfaces have been developed and applied in clinical use. A variety of these coatings are continuously investigated in order to improve bone–implant integration and enhance osteogenesis at the implant surface. One of the most important elements used in joint arthroplasty is titanium.


Total Knee Arthroplasty Titanium Alloy Femoral Component Aseptic Loosening Acetabular Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    vom Hrn William Gregor. Beobachtungen und Versuche über den Menakanite, einen in Cornwall gefundenen mangetischen Sand; (Obervations and experiments in a magnetic sand found in Cornwall). Crell’s Chemische Annalen. 1971;15:40–54, 103–19.Google Scholar
  2. 2.
    Kroll W. “Verformbares Titan und Zirkon” (Eng: Ductile Titanium and Zirconium) Zeitschrift für anorganische und allgemeine. Chemie. 1937;234:42–5.Google Scholar
  3. 3.
    Kroll WJ. The production of ductile titanium. Trans Electrochem Soc. 1940;78:35–47.Google Scholar
  4. 4.
    Donachie Jr MJ. TITANIUM: a technical guide. Metals Park: ASM International; 1988. p. 11.Google Scholar
  5. 5.
    Stwertka A. Titanium. In: Guide to the elements (Revised ed.). New York: Oxford University Press; 1998. p. 81–2.Google Scholar
  6. 6.
    Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O, Ohman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg. 1997;16S:1–132.Google Scholar
  7. 7.
    Collings EW. The physical metallurgy of titanium alloys. In: Gegel HL, editor. ASM series in metal processing. Cleveland/Metals Park: American Society for Metals; 1984.Google Scholar
  8. 8.
    Polmear JJ. Chapter6. Titanium alloys. In: Light alloys. London: Edward Arnold Publ; 1981.Google Scholar
  9. 9.
    Long M, Rack HJ. Titanium alloys in total joint replacement–a materials science perspective. Biomaterials. 1998;19:1621–39.PubMedGoogle Scholar
  10. 10.
    Samuel S, Nag S, Nasrazadani S, Ukirde V, El Bouanani M, Mohandas A, Nguyen K, Banerjee R. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications. J Biomed Mater Res A. 2010;94:1251–6.PubMedGoogle Scholar
  11. 11.
    Guillemot F. Recent advances in the design of titanium alloys for orthopedic applications. Expert Rev Med Devices. 2005;2:741–8.PubMedGoogle Scholar
  12. 12.
    Larsson C, Thomsen P, Lausmaa J, Rodahl M, Kasemo B, Ericson LE. Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology. Biomaterials. 1994;15:1062–74.PubMedGoogle Scholar
  13. 13.
    Larsson C, Thomsen P, Aronsson BO, Rodahl M, Lausmaa J, Kasemo B, Ericson LE. Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials. 1996;17:605–16.PubMedGoogle Scholar
  14. 14.
    Nishiguchi S, Nakamura T, Kobayashi M, Kim HM, Miyaji F, Kokubo T. The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials. 1999;20:491–500.PubMedGoogle Scholar
  15. 15.
    Baleani M, Viceconti M, Toni A. The effect of sandblasting treatment on endurance properties of titanium alloy hip prostheses. Artif Organs. 2000;24:296–9.PubMedGoogle Scholar
  16. 16.
    Degasne I, Baslé MF, Demais V, Huré G, Lesourd M, Grolleau B, Mercier L, Chappard D. Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces. Calcif Tissue Int. 1999;64:499–507.PubMedGoogle Scholar
  17. 17.
    Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27:2651–70.PubMedGoogle Scholar
  18. 18.
    Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials. 2006;27:5892–900.PubMedGoogle Scholar
  19. 19.
    Pilliar RM. Porous biomaterials. In: Williams D, editor. Concise encyclopedia of medical & dental materials. Oxford/New York/Cambridge, MA: Pergamon Press and the MIT Press; 1990. p. 312–9.Google Scholar
  20. 20.
    Jasty M, Rubash HE, Paiement GD, Bragdon CR, Parr J, Harris WH. Porous-coated uncemented components in experimental total hip arthroplasty in dogs. Effect of plasma-sprayed calcium phosphate coatings on bone ingrowth. Clin Orthop. 1992;280:300–9.PubMedGoogle Scholar
  21. 21.
    Zhang C, Leng Y, Chen J. Elastic and plastic behavior of plasma-sprayed hydroxyapatite coatings on a Ti-6Al-4V substrate. Biomaterials. 2001;22:1357–63.PubMedGoogle Scholar
  22. 22.
    Massaro C, Baker MA, Cosentino F, Ramires PA, Klose S, Milella E. Surface and biological evaluation of hydroxyapatite-based coatings on titanium deposited by different techniques. J Biomed Mater Res. 2001;58:651–7.PubMedGoogle Scholar
  23. 23.
    Chen D, Bertollo N, Lau A, Taki N, Nishino T, Mishima H, Kawamura H, Walsh WR. Osseointegration of porous titanium implants with and without electrochemically deposited DCPD coating in an ovine model. J Orthop Surg Res. 2011;6:56.PubMedGoogle Scholar
  24. 24.
    Bigi A, Boanini E, Bracci B, Facchini A, Panzavolta S, Segatti F, Sturba L. Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials. 2005;26:4085–9.PubMedGoogle Scholar
  25. 25.
    Liu Y, Layrolle P, de Bruijn J, van Blitterswijk C, de Groot K. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. J Biomed Mater Res. 2001;57:327–35.PubMedGoogle Scholar
  26. 26.
    Fernandez-Pradas JM, Clèries L, Martinez E, Sardin G, Esteve J, Morenza JL. Influence of thickness on the properties of hydroxyapatite coatings deposited by KrF laser ablation. Biomaterials. 2001;22:2171–5.PubMedGoogle Scholar
  27. 27.
    Yang Y, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process–an alternative to plasma spraying. Biomaterials. 2005;26:327–37.PubMedGoogle Scholar
  28. 28.
    Froimson MI, Garino J, Machenaud A, Vidalain JP. Minimum 10-year results of a tapered, titanium, hydroxyapatite-coated hip stem: an independent review. J Arthroplasty. 2007;22:1–7.PubMedGoogle Scholar
  29. 29.
    Haenle M, Fritsche A, Zietz C, Bader R, Heidenau F, Mittelmeier W, Gollwitzer H. An extended spectrum bactericidal titanium dioxide (TiO2) coating for metallic implants: in vitro effectiveness against MRSA and mechanical properties. J Mater Sci Mater Med. 2011;22:381–7.PubMedGoogle Scholar
  30. 30.
    Harman MK, Banks SA, Hodge WA. Wear analysis of a retrieved hip implant with titanium nitride coating. J Arthroplasty. 1997;12:938–45.PubMedGoogle Scholar
  31. 31.
    Balla VK, Xue W, Bose S, Bandyopadhyay A. Laser-assisted Zr/ZrO(2) coating on Ti for load-bearing implants. Acta Biomater. 2009;5:2800–9.PubMedGoogle Scholar
  32. 32.
    Kornu R, Maloney WJ, Kelly MA, Smith RL. Osteoblast adhesion to orthopaedic implant alloys: effects of cell adhesion molecules and diamond-like carbon coating. J Orthop Res. 1996;14:871–7.PubMedGoogle Scholar
  33. 33.
    Scott DF, Jaffe WL. Host-bone response to porous-coated cobalt-chrome and hydroxyapatite-coated titanium femoral components in hip arthroplasty: dual-energy X-ray absorptiometry analysis of paired bilateral cases at 5 to 7 years. J Arthroplasty. 1996;11:429–37.PubMedGoogle Scholar
  34. 34.
    Røkkum M, Reigstad A. Total hip replacement with an entirely hydroxyapatite -coated prosthesis: 5 years’ follow-up of 94 consecutive hips. J Arthroplasty. 1999;14:689–700.PubMedGoogle Scholar
  35. 35.
    Hirshhom HS, McBeath AA, Dustoor MR. Porous titanium surgical implant materials. J Biomed Mater Res Syurp 1971;2:49–67.Google Scholar
  36. 36.
    Lueck RA, Galante J, Rostoker W, Ray RD. Development of an open pore metallic implant to permit attachment to bone. Surg Forum. 1969;20:456–7.PubMedGoogle Scholar
  37. 37.
    Spector M. Historical review of porous-coated implants. J Arthroplasty. 1987;2:163–77.PubMedGoogle Scholar
  38. 38.
    Galante J, Rostoker W, Lueck R, Ray RD. Sintered fiber metal composites as a basis for attachment of implants to bone. J Bone Joint Surg Am. 1971;53A:101–4.Google Scholar
  39. 39.
    Lembert E, Galante J, Rostoker W. Fixation of skeletal replacement by fiber metal composites. Clin Orthop. 1972;87:303–10.PubMedGoogle Scholar
  40. 40.
    Hahn H, Palich W. Preliminary evaluation of porous metal surfaced titanium for orthopedic implants. J Biomed Mater Res. 1970;4:571–7.PubMedGoogle Scholar
  41. 41.
    Turner TM, Sumner DR, Urban RM, Rivero DP, Galante JO. A comparative study of porous coatings in a weight-bearing total hip-arthroplasty model. J Bone Joint Surg Am. 1986;68A:1396–409.Google Scholar
  42. 42.
    Chao EYS, Galante JO. Animal study of titanium fiber metal prostheses for segmental bone and joint replacement. In: Kotz R, editor. Proceedings of the second International workshop of the design and application of tumor prostheses for bone and joint reconstruction, Vienna; 1983. p. 123–8.Google Scholar
  43. 43.
    Chen PQ, Turner TM, Ronnigen H, Galante J, Urban R, Rostoker W. A canine cementless total hip prosthesis model. Clin Orthop. 1983;176:24–33.PubMedGoogle Scholar
  44. 44.
    Thomas KA, Kay JF, Cook SD, Jarcho M. The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials. J Biomed Mater Res. 1987;21:1395–414.PubMedGoogle Scholar
  45. 45.
    Cook SD, Thomas KA, Kay JF, Jarcho M. Hydroxyapatite-coated titanium for orthopedic implant applications. Clin Orthop. 1988;232:225–43.PubMedGoogle Scholar
  46. 46.
    Cook SD, Thomas KA, Kay JF, Jarcho M. Hydroxyapatite-coated porous titanium for use as an orthopedic biologic attachment system. Clin Orthop. 1988;230:303–12.PubMedGoogle Scholar
  47. 47.
    Cook SD, Thomas KA, Kay J. Experimental coating defects in hydroxylapatite-coated implants. Clin Orthop. 1991;265:280–90.PubMedGoogle Scholar
  48. 48.
    Søballe K, Hansen ES, Brockstedt-Rasmussen H, Pedersen CM, Bünger C. Hydroxyapatite coating enhances fixation of porous coated implants. A comparison in dogs between press fit and noninterference fit. Acta Orthop Scand. 1990;61:299–306.PubMedGoogle Scholar
  49. 49.
    Maistrelli GL, Mahomed N, Garbuz D, Fornasier V, Harrington IJ, Binnington A. Hydroxyapatite coating on carbon composite hip implants in dogs. J Bone Joint Surg Br. 1992;74B:452–6.Google Scholar
  50. 50.
    Karabatsos B, Myerthall SL, Fornasier VL, Binnington A, Maistrelli GL. Osseointegration of hydroxyapatite porous-coated femoral implants in a canine model. Clin Orthop. 2001;392:442–9.PubMedGoogle Scholar
  51. 51.
    Coathup MJ, Blackburn J, Goodship AE, Cunningham JL, Smith T, Blunn GW. Role of hydroxyapatite coating in resisting wear particle migration and osteolysis around acetabular components. Biomaterials. 2005;26:4161–9.PubMedGoogle Scholar
  52. 52.
    Wheeler DL, Campbell AA, Graff GL, Miller GJ. Histological and biomechanical evaluation of calcium phosphate coatings applied through surface-induced mineralization to porous titanium implants. J Biomed Mater Res. 1997;34:539–43.PubMedGoogle Scholar
  53. 53.
    Nakashima Y, Hayashi K, Inadome T, Uenoyama K, Hara T, Kanemaru T, Sugioka Y, Noda I. Hydroxyapatite-coating on titanium arc sprayed titanium implants. J Biomed Mater Res. 1997;35:287–98.PubMedGoogle Scholar
  54. 54.
    Jakobsen T, Baas J, Kold S, Bechtold JE, Elmengaard B, Søballe K. Local bisphosphonate treatment increases fixation of hydroxyapatite-coated implants inserted with bone compaction. J Orthop Res. 2009;27:189–94.PubMedGoogle Scholar
  55. 55.
    Jakobsen T, Kold S, Bechtold JE, Elmengaard B, Søballe K. Local alendronate increases fixation of implants inserted with bone compaction: 12-week canine study. J Orthop Res. 2007;25:432–41.PubMedGoogle Scholar
  56. 56.
    Lamberg A, Bechtold JE, Baas J, Søballe K, Elmengaard B. Effect of local TGF-beta1 and IGF-1 release on implant fixation: comparison with hydroxyapatite coating: a paired study in dogs. Acta Orthop Scand. 2009;80:499–504.Google Scholar
  57. 57.
    Sumner DR, Turner TM, Urban RM, Virdi AS, Inoue N. Additive enhancement of implant fixation following combined treatment with rhTGF-beta2 and rhBMP-2 in a canine model. J Bone Joint Surg Am. 2006;88A:806–17.Google Scholar
  58. 58.
    Greenfield EJ. Mounting for artificial teeth, U.S. Patent Office, Serial No. 478360, Patented Dec 14, 1909.Google Scholar
  59. 59.
    Grindlay JH, Clagett OT. A plastic sponge prosthesis for use after pneumonectomy; preliminary report of an experimental study. Proc Staff Meet Mayo Clin. 1949;24:538.PubMedGoogle Scholar
  60. 60.
    Agins HJ, Alcock NW, Bansal M, Salvati EA, Wilson PD, Pellicci PM, Bullough PG. Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis. J Bone Joint Surg Am. 1998;70A:347–56.Google Scholar
  61. 61.
    Head WC, Bauk DJ, Emerson RH. Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin Orthop. 1995;70:85–90.Google Scholar
  62. 62.
    Meachim G, Williams DF. Changes in nonosseous tissue adjacent to titanium implants. J Biomed Mater Res. 1973;7:555–72.PubMedGoogle Scholar
  63. 63.
    Ni GX, Lu WW, Chiu KY, Fong DY. Cemented or uncemented femoral component in primary total hip replacement? A review from a clinical and radiological perspective. J Orthop Surg. 2005;13:96–105.Google Scholar
  64. 64.
    Urban RM, Jacobs JJ, Sumner DR, Peters CL, Voss FR, Galante JO. The bone-implant interface of femoral stems with non-circumferential porous coating. J Bone Joint Surg Am. 1996;78A:1068–81.Google Scholar
  65. 65.
    Sun L, Berndt CC, Gross KA, Kucuk A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review. J f Biomed Mater Res. 2001;58:570–92.Google Scholar
  66. 66.
    Semlitsch M. Titanium alloys for hip joint replacements. Clin Mater. 1987;2:1–13.Google Scholar
  67. 67.
    Rothman RH, Cohn JC. Cemented versus cementless total hip arthroplasty. A critical review. Clin Orthop. 1990;254:153–69.PubMedGoogle Scholar
  68. 68.
    Bloebaum RD, Bachus KN, Momberger NG, Hofmann AA. Mineral apposition rates of human cancellous bone at the interface of porous coated implants. J Biomed Mater Res. 1994;28:537–44.PubMedGoogle Scholar
  69. 69.
    Dorr LD, Luckett M, Conaty JP. Total hip arthroplasties in patients younger than 45 years. A nine- to ten-year follow-up study. Clin Orthop. 1990;260:215–9.PubMedGoogle Scholar
  70. 70.
    Callaghan JJ. Results of primary total hip arthroplasty in young patients. Instr Course Lect. 1994;43:315–21.PubMedGoogle Scholar
  71. 71.
    Smith SE, Garvin KL, Jardon OM, Kaplan PA. Uncemented total hip arthroplasty. Prospective analysis of the tri-lock femoral component. Clin Orthop. 1991;269:43–50.PubMedGoogle Scholar
  72. 72.
    Bourne RB, Rorabeck CH, Ghazal ME, Lee MH. Pain in the thigh following total hip replacement with a porous-coated anatomic prosthesis for osteoarthrosis. A five-year follow-up study. J Bone Joint Surg Am. 1994;76A:1464–70.Google Scholar
  73. 73.
    Maric Z, Karpman RR. Early failure of noncemented porous coated anatomic total hip arthroplasty. Clin Orthop. 1992;278:116–20.PubMedGoogle Scholar
  74. 74.
    Engh CA, Hooten JP, Zettl-Schaffer KF, Ghaffarpour M, McGovern TF, Macalino GE, Zicat BA. Porous-coated total hip replacement. Clin Orthop. 1994;298:89–96.PubMedGoogle Scholar
  75. 75.
    Mallory TH, Head WC, Lombardi AV, Emerson RH, Eberle RW, Mitchell MB. Clinical and radiographic outcome of a cementless, titanium, plasma spray-coated total hip arthroplasty femoral component. Justification for continuance of use. J Arthroplasty. 1996;11:653–60.PubMedGoogle Scholar
  76. 76.
    Manley MT, Capello WN, D’Antonio JA, Edidin AA, Geesink RG. Fixation of acetabular cups without cement in total hip arthroplasty. A comparison of three different implant surfaces at a minimum duration of follow-up of five years. J Bone Joint Surg Am. 1998;80A:1175–85.Google Scholar
  77. 77.
    Hofmann AA, Feign ME, Klauser W, VanGorp CC, Camargo MP. Cementless primary total hip arthroplasty with a tapered, proximally porous-coated titanium prosthesis: a 4- to 8-year retrospective review. J Arthroplasty. 2000;15:833–9.PubMedGoogle Scholar
  78. 78.
    Meding JB, Keating EM, Ritter MA, Faris PM, Berend ME. Minimum ten-year follow-up of a straight-stemmed, plasma-sprayed, titanium-alloy, uncemented femoral component in primary total hip arthroplasty. J Bone Joint Surg Am. 2004;86A:92–7.Google Scholar
  79. 79.
    Geesink RG, de Groot K, Klein CP. Bonding of bone to apatite-coated implants. J Bone Joint Surg Br. 1988;70B:17–22.Google Scholar
  80. 80.
    Tanzer M, Kantor S, Rosenthall L, Bobyn JD. Femoral remodeling after porous coated total hip arthroplasty with and without hydroxyapatite-tricalcium phosphate coating: a prospective randomized trial. J Arthroplasty. 2001;16:552–8.PubMedGoogle Scholar
  81. 81.
    Yee AJ, Kreder HK, Bookman I, Davey JR. A randomized trial of hydroxyapatite coated prostheses in total hip arthroplasty. Clin Orthop. 1999;366:120–32.PubMedGoogle Scholar
  82. 82.
    Miyakawa S, Kawamura H, Mishima H, Yasumoto J. Grit-blasted and hydroxyapatite-coated total hip arthroplasty: an 11- to 14-year follow-up study. J Orthop Sci. 2004;9:462–7.PubMedGoogle Scholar
  83. 83.
    Vaughn BK, Lombardi AV, Mallory TH. Clinical and radiographic experience with a hydroxyapatite-coated titanium plasma-sprayed porous implant. Semin Arthroplasty. 1991;2:309–16.PubMedGoogle Scholar
  84. 84.
    Kim YH, Kim JS, Oh SH, Kim JM. Comparison of porous-coated titanium femoral stems with and without hydroxyapatite coating. J Bone Joint Surg Am. 2003;85A:1682–8.Google Scholar
  85. 85.
    Kim YH, Kim JS, Joo JH, Park JW. Is hydroxyapatite coating necessary to improve survivorship of porous-coated titanium femoral stem? J Arthroplasty. 2012;27:559–63.PubMedGoogle Scholar
  86. 86.
    Bøe BG, Röhrl SM, Heier T, Snorrason F, Nordsletten L. A prospective randomized study comparing electrochemically deposited hydroxyapatite and plasma-sprayed hydroxyapatite on titanium stems. Acta Orthop Scand. 2011;82:13–9.Google Scholar
  87. 87.
    Fielding GA, Roy M, Bandyopadhyay A, Bose S. Antibacterial and biological characteristics of plasma sprayed silver and strontium doped hydroxyapatite coatings. Acta Biomater. 2012. doi: 10.1016/j.actbio.2012.04.004.PubMedGoogle Scholar
  88. 88.
    Bourne RB, Rorabeck CH. A critical look at cementless stems. Taper designs and when to use alternatives. Clin Orthop. 1998;355:212–23.PubMedGoogle Scholar
  89. 89.
    Bugbee WD, Culpepper WJ, Engh CA, Engh CA. Long-term clinical consequences of stress-shielding after total hip arthroplasty without cement. J Bone Joint Surg Am. 1997;79A:1007–12.Google Scholar
  90. 90.
    Haddad RJ, Cook SD, Thomas KA. Biological fixation of porous-coated implants. J Bone Joint Surg Am. 1987;69A:1459–66.Google Scholar
  91. 91.
    Sarmiento A, Turner TM, Latta LL, Tarr RR. Factors contributing to lysis of the femoral neck in total hip arthroplasty. Clin Orthop. 1976;145:208–12.Google Scholar
  92. 92.
    Emerson RH, Sanders SB, Head WC, Higgins L. Effect of circumferential plasma-spray porous coating on the rate of femoral osteolysis after total hip arthroplasty. J Bone Joint Surg Am. 1999;81A:1291–8.Google Scholar
  93. 93.
    Kitamura S, Hasegawa Y, Iwasada S, Yamauchi K, Kawamoto K, Kanamono T, Iwata H. Catastrophic failure of cementless total hip arthroplasty using a femoral component without surface coating. J Arthroplasty. 1999;14:918–24.PubMedGoogle Scholar
  94. 94.
    Butler JB, Lansky D, Duwelius PJ. Prospective evaluation of total hip arthroplasty with a cementless, anatomically designed, porous-coated femoral implant: mean 11-year follow-up. J Arthroplasty. 2005;20:709–16.PubMedGoogle Scholar
  95. 95.
    Hartzband MA, Glassman AH, Goldberg VM, Jordan LR, Crowninshield RD, Fricka KB, Jordan LC. Survivorship of a low-stiffness extensively porous-coated femoral stem at 10 years. Clin Orthop. 2010;468:433–40.PubMedGoogle Scholar
  96. 96.
    Lombardi AV, Berend KR, Mallory TH, Skeels MD, Adams JB. Survivorship of 2000 tapered titanium porous plasma-sprayed femoral components. Clin Orthop. 2009;467:146–54.PubMedGoogle Scholar
  97. 97.
    Buechel FF, Buechel FF, Helbig TE, D’Alessio J, Pappas MJ. Two- to 12-year evaluation of cementless Buechel-Pappas total hip arthroplasty. J Arthroplasty. 2004;19:1017–27.PubMedGoogle Scholar
  98. 98.
    Rodriguez JA, Deshmukh AJ, Klauser WU, Rasquinha VJ, Lubinus P, Ranawat CS. Patterns of osseointegration and remodeling in femoral revision with bone loss using modular, tapered, fluted, titanium stems. J Arthroplasty. 2011;26:1409–17.PubMedGoogle Scholar
  99. 99.
    Hwang BH, Lee WS, Park KK, Yang IH, Han CD. Straight tapered titanium stem with alumina bearing in cementless primary total hip arthroplasty: a minimum 5-year follow-up. J Arthroplasty. 2011;26:1310–7.PubMedGoogle Scholar
  100. 100.
    Jafari SM, Bender B, Coyle C, Parvizi J, Sharkey PF, Hozack WJ. Do tantalum and titanium cups show similar results in revision hip arthroplasty? Clin Orthop. 2010;468:459–65.PubMedGoogle Scholar
  101. 101.
    Yue EJ, Duffy GP. Impaction grafting using a cemented porous-coated modular acetabular component. J Arthroplasty. 2008;23:466–9.PubMedGoogle Scholar
  102. 102.
    Klaassen MA, Martínez-Villalobos M, Pietrzak WS, Mangino GP, Guzman DC. Midterm survivorship of a press-fit, plasma-sprayed, tri-spike acetabular component. J Arthroplasty. 2009;24:391–9.PubMedGoogle Scholar
  103. 103.
    Meding JB, Galley MR, Ritter MA. High survival of uncemented proximally porous-coated titanium alloy femoral stems in osteoporotic bone. Clin Orthop. 2010;468:441–7.PubMedGoogle Scholar
  104. 104.
    Reitman RD, Emerson R, Higgins L, Head W. Thirteen year results of total hip arthroplasty using a tapered titanium femoral component inserted without cement in patients with type C bone. J Arthroplasty. 2003;18:116–21.PubMedGoogle Scholar
  105. 105.
    Engh CA, Hopper RH, Engh CA. Long-term porous-coated cup survivorship using spikes, screws, and press-fitting for initial fixation. J Arthroplasty. 2004;19:54–60.PubMedGoogle Scholar
  106. 106.
    Dorr LD, Wan Z, Cohen J. Hemispheric titanium porous coated acetabular component without screw fixation. Clin Orthop. 1998;351:158–68.PubMedGoogle Scholar
  107. 107.
    Sarmiento A, Gruen TA. Radiographic analysis of a low-modulus titanium-alloy femoral total hip component. Two to six-year follow-up. J Bone Joint Surg Am. 1985;67A:48–56.Google Scholar
  108. 108.
    Jergesen HE, Karlen JW. Clinical outcome in total hip arthroplasty using a cemented titanium femoral prosthesis. J Arthroplasty. 2002;17:592–9.PubMedGoogle Scholar
  109. 109.
    Akiyama H, Kawanabe K, Yamamoto K, So K, Kuroda Y, Nakamura T. Clinical outcomes of cemented double-tapered titanium femoral stems: a minimum 5-year follow-up. J Orthop Sci. 2011;16:689–97.PubMedGoogle Scholar
  110. 110.
    Bowditch M, Villar R. Is titanium so bad? Medium-term outcome of cemented titanium stems. J Bone Joint Surg Br. 2001;83B:680–5.Google Scholar
  111. 111.
    Boyer P, Lazennec JY, Poupon J, Rousseau MA, Ravaud P, Catonné Y. Clinical and biological assessment of cemented titanium femoral stems: an 11-year experience. Int Orthop. 2009;33:1209–15.PubMedGoogle Scholar
  112. 112.
    Rostoker W, Galante JO. Some new studies of the wear behavior of ultrahigh molecular weight polyethylene. J Biomed Mater Res. 1976;10:303–10.PubMedGoogle Scholar
  113. 113.
    Peterson CD, Hillberry BM, Heck DA. Component wear of total knee prostheses using Ti-6A1-4V, titanium nitride coated Ti-6A1-4V, and cobalt-chromium-molybdenum femoral components. J Biomed Mater Res. 1998;22:887–903.Google Scholar
  114. 114.
    Baldwin JL, El-Saied MR, Rubinstein RA. Uncemented total knee arthroplasty: report of 109 titanium knees with cancellous-structured porous coating. Orthopedics. 1996;19:123–30.PubMedGoogle Scholar
  115. 115.
    La Budde JK, Orosz JF, Bonfiglio TA, Pellegrini VD. Particulate titanium and cobalt-chrome metallic debris in failed total knee arthroplasty. A quantitative histologic analysis. J Arthroplasty. 1994;9:291–304.PubMedGoogle Scholar
  116. 116.
    Jacobs JJ, Silverton C, Hallab NJ, Skipor AK, Patterson L, Black J, Galante JO. Metal release and excretion from cementless titanium alloy total knee replacements. Clin Orthop. 1999;358:173–80.PubMedGoogle Scholar
  117. 117.
    Onsten I, Nordqvist A, Carlsson AS, Besjakov J, Shott S. Hydroxyapatite augmentation of the porous coating improves fixation of tibial components. A randomised RSA study in 116 patients. J Bone Joint Surg Br. 1998;80B:417–25.Google Scholar
  118. 118.
    Bloebaum RD, Bachus KN, Jensen JW, Hofmann AA. Postmortem analysis of consecutively retrieved asymmetric porous-coated tibial components. J Arthroplasty. 1997;12:920–9.PubMedGoogle Scholar
  119. 119.
    Kim KJ, Iwase M, Kotake S, Itoh T. Effect of bone marrow grafting on the titanium porous-coated implant in bilateral total knee arthroplasty. Acta Orthop Scand. 2007;78:116–22.Google Scholar
  120. 120.
    Kudo H, Iwano K, Nishino J. Cementless or hybrid total elbow arthroplasty with titanium-alloy implants. A study of interim clinical results and specific complications. J Arthroplasty. 1994;9:269–78.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Laboratory of Orthopaedics and Biomechanics, School of MedicineUniversity of IoanninaIoanninaGreece

Personalised recommendations