Advertisement

The Effect of Pharmacological Agents on the Bone-Implant Interface

  • Ioannis K. Triantafillopoulos
  • Nikolaos A. Papaioannou
Chapter

Abstract

In joint replacement surgery, the prerequisite for clinical success is the achievement of good and fast bone-implant osseointegration. Osseointegration can be defined as the contact which intervenes, without interposition of non-bone tissue, between normal remodeled bone and an implant which can bear the distribution of load from the implant to and inside the bone tissue. The contact area between the implant surface and the bone is called bone-implant interface. This is the area where the biology of bone ingrowth takes place. Bone ingrowth can be defined as the formation of bone tissue inside the porous surface of an implant.

Keywords

Zoledronic Acid Aseptic Loosening Strontium Ranelate Bone Ingrowth Periprosthetic Bone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kienapfel H, Sprey C, Wilke A, Griss P. Implant fixation by bone ingrowth. J Arthroplasty. 1999;14(3):355–68.PubMedCrossRefGoogle Scholar
  2. 2.
    Branemark PI. Vital microscopy of bone marrow in rabbit. Scand J Clin Lab Invest. 1959;11(S38):1–82.PubMedGoogle Scholar
  3. 3.
    Branemark PI. Osseointegration and its experimental studies. J Prosthet Dent. 1983;50:399–410.PubMedCrossRefGoogle Scholar
  4. 4.
    Rigo ECS, Boschi AO, Yoshimoto M, Allegrini Jr S, Konig Jr B, Carbonari MJ. Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on titanium dental implants. Mater Sci Eng. 2004;24:647–51.CrossRefGoogle Scholar
  5. 5.
    Abu-Amer Y, Darwech I, Clohishy JC. Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther. 2007;9(S1):S6.PubMedCrossRefGoogle Scholar
  6. 6.
    Kim YH, Kim VE. Uncemented porous-coated anatomic total hip replacement. Results at six years in a consecutive series. J Bone Joint Surg Br. 1993;75B:6–13.Google Scholar
  7. 7.
    Zhang C, Tang TT, Ren WP, Zhang XL, Dai KR. Inhibiting wear particles-induced osteolysis with doxycycline. Acta Pharmacol Sin. 2007;28:1603–10.PubMedCrossRefGoogle Scholar
  8. 8.
    Ren W, Li XH, Chen BD, Wooley PH. Erythromycin inhibits wear debris-induced osteoclastogenesis by modulation of murine macrophage NF-kappaB activity. J Orthop Res. 2004;22:21–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Yang SY, Wu B, Mayton L, Mukherjee P, Robbins PD, Evans CH, Wooley PH. Protective effects of IL-1Ra or vIL-10 gene transfer on a murine model of wear debris-induced osteolysis. Gene Ther. 2004;11:483–91.PubMedCrossRefGoogle Scholar
  10. 10.
    Merkel KD, Erdmann JM, McHugh KM, Abu-Amer Y, Ross FP, Teitelbaum SL. Tumor necrosis factor-alpha mediates orthopaedic implant osteolysis. Am J Pathol. 1999;154:203–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Schwarz EM, Lu AP, Goater JJ, Benz EB, Kollias G, Rosier RN, Puzas JE, O’Keefe RJ. Tumor necrosis factor-alpha/nuclear transcription factor-kappaB signaling in periprosthetic osteolysis. J Orthop Res. 2000;18:472–80.PubMedCrossRefGoogle Scholar
  12. 12.
    Childs LM, Goater JJ, O’Keefe RJ, Schwartz EM. Efficacy of etanercept for wear debris-induced osteolysis. J Bone Miner Res. 2001;16:338–47.PubMedCrossRefGoogle Scholar
  13. 13.
    Rakshit DS, Lim J, Ly K, Ivaskhiv LB, Nestor BJ, Sculco TP, Purdue PE. Involvement of complement receptor 3 (CR3) and scavenger receptor in macrophage responses to wear debris. J Orthop Res. 2006;24:2036–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Chiba J, Rubash HE, Kim KJ, Iawaki Y. The characterization of cytokines in the interface tissue obtained from failed cementless total hip arthroplasty with and without femoral osteolysis. Clin Orthop. 1994;300:304–12.PubMedGoogle Scholar
  15. 15.
    Nivbrant B, Karlsson K, Karrhorn J. Cytokine levels in synovial fluid from hips with well-functioning or loose prostheses. J Bone Joint Surg Br. 1999;81B:163–6.CrossRefGoogle Scholar
  16. 16.
    Stea S, Visantin M, Granchi D, Ciapetti G, Donati ME, Sudanese A, Zanotti C, Toni A. Cytokines and osteolysis around total hip prostheses. Cytokine. 2000;12:1575–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Shanbhag AS, Jacobs JJ, Black J, Galante JO, Glant TT. Cellular mediators secreted by interfacial membranes obtained at revision total hip arthroplasty. J Arthroplasty. 1995;10:498–506.PubMedCrossRefGoogle Scholar
  18. 18.
    Sabokbar A, Rushton N. Role of inflammatory mediators and adhesion in the pathogenesis of aseptic loosening in total hip arthroplasties. J Arthroplasty. 1995;10:810–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Ishiguro N, Kojima T, Ito T, Saga S, Anma H, Kurokouchi K, Iwahori Y, Iwase T, Iwata H. Macrophage activation and migration in interface tissue around loosening total hip arthroplasty components. J Biomed Mater Res. 1997;35:399–406.PubMedCrossRefGoogle Scholar
  20. 20.
    Haynes DR, Crotti TN, Potter AE, Loric M, Atkins GJ, Howie DW, Findlay TM. The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis. J Bone Joint Surg Br. 2001;83B:902–11.CrossRefGoogle Scholar
  21. 21.
    Suh KT, Chang JW, Jung JS. The role of inducible nitric oxide synthase in aseptic loosening after total hip arthroplasty. J Bone Joint Surg Br. 2002;84B:753–7.CrossRefGoogle Scholar
  22. 22.
    Goodman SB, Huie P, Song Y, Schurman D, Maloney W, Woolson S, Sibley R. Cellular profile and cytokine production at prosthetic interfaces: study of tissues retrieved from revised hip and knee replacements. J Bone Joint Surg Br. 1998;80B:531–9.CrossRefGoogle Scholar
  23. 23.
    Xu JW, Konttinen YT, Lassus J, Natah S, Ceponis A, Solovieva S, Aspenberg P, Santavirta S. Tumor necrosis factor-alpha (TNF-a)in loosening of total hip replacement (THR). Clin Exp Rheumatol. 1996;14:643–8.PubMedGoogle Scholar
  24. 24.
    Abu-Amer Y, Clohisy JC. Chapter 20: The biologic response to orthopaedic implants. In: Einhorn TA, O’Keefe RJ, Buckwalter JA, editors. Orthopaedic basic science. Foundations of clinical practice. 3rd ed. Rosemont: American Academy of Orthopaedic Surgeons; 2007. p. 365–77.Google Scholar
  25. 25.
    Goater JJ, O’Keefe RJ, Rosier RN, Puzas JE, Schwarz EM. Efficacy of ex vivo OPG gene therapy in preventing wear debris induced osteolysis. J Orthop Res. 2002;20:169–73.PubMedCrossRefGoogle Scholar
  26. 26.
    Ulrich-Vinther M, Carmody EE, Goater JJ, Sb K, O’Keefe RJ, Schwarz EM. Recombinant adeno-associated virus-mediated osteoprotegerin gene therapy inhibits wear debris-induced osteolysis. J Bone Joint Surg Am. 2002;84A:1405–12.Google Scholar
  27. 27.
    Childs LM, Paschalis EP, Xing L, Dougall WC, Anderson D, Boskey AL, Puzas JE, Rosier RN, O’Keefe RJ, Boyce BF, Schwarz EM. In vivo RANK signaling blockade using the receptor activator of NF-kappaB:Fc effectively prevents and ameliorates wear debris-induced osteolysis via osteoclast depletion without inhibiting osteogenesis. J Bone Miner Res. 2002;17:192–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang T, Yu H, Gong W, Zhang L, Jia T, Wooley PH, Yang SY. The effect of osteoprotegerin gene modification on wear debris-induced osteolysis in a murine model of knee prosthesis failure. Biomaterials. 2009;30:6102–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang L, Jia TH, Chong AC, Bai L, Yu H, Gong W, Wooley PH, Yang SY. Cell-based osteoprotegerin therapy for debris-induced aseptic prosthetic loosening on a murine model. Gene Ther. 2010;17:1262–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Baron R, Ferrari S, Russell RG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone. 2011;48:677–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Maeda T, Matsunuma A, Kawane T, Horiuchi N. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem Biophys Res Commun. 2001;280:874–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Montagnani A, Gonnelli S, Cepollaro C, Pacini S, Campagna MS, Franci MB, Lucani B, Gennari C. Effect of simvastatin treatment on bone mineral density and bone turnover in hypercholesterolemic postmenopausal women; a 1-year longitudinal study. Bone. 2003;32:427–33.PubMedCrossRefGoogle Scholar
  33. 33.
    Meier CR, Schlienger RG, Kraenzlin ME, Schlegel B, Jick H. HMG-CoA reductase inhibitors and the risk of fractures. JAMA. 2000;283:3205–10.PubMedCrossRefGoogle Scholar
  34. 34.
    Von Knoch F, Wedemeyer C, Heckelei A, Saxler G, Hilken G, Brankamp J, Sterner T, Landgraeber S, Henschke F, Loer F, von Knoch M. Promotion of bone formation by simvastatin in polyethylene particle-induced osteolysis. Biomaterials. 2005;26:5783–9.CrossRefGoogle Scholar
  35. 35.
    Yang F, Zhao SF, Zhang F, He FM, Yang GL. Simvastatin-loaded porous implant surfaces stimulate preosteoblasts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111:551–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Yin H, Li J, Yu X, Fu Z. Effects of simvastatin on osseointegration in canine total hip arthroplasty model: an experimental study. J Arthroplasty. 2011;26:1534–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Basarir K, Erdemli B, Can A, Erdemli E, Zeyrek T. Osseointegration in arthroplasty: can simvastatin promote bone response to implants? Int Orthop. 2009;33:855–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Ayukawa Y, Ogino Y, Moriyama Y, Atsuta I, Jinno Y, Kihara M, Tsukiyama Y, Koyano K. Simvastatin enhances bone formation around titanium implants in rat tibiae. J Oral Rehabil. 2010;37:123–30.PubMedCrossRefGoogle Scholar
  39. 39.
    Du Z, Chen J, Yan F, Xiao Y. Effects of simvastatin on bone healing around titanium implants in osteoporotic rats. Clin Oral Implants Res. 2009;20:145–50.PubMedCrossRefGoogle Scholar
  40. 40.
    Nociti Jr FH, Sallum EA, Toledo S, Newman HN, Sallum AW. Effect of calcitonin on bone healing following titanium implant insertion. J Oral Sci. 1999;41:77–80.PubMedCrossRefGoogle Scholar
  41. 41.
    Januário AL, Sallum EA, de Toledo S, Sallum AW, Nociti Jr JF. Effect of calcitonin on bone formation around titanium implant. A histometric study in rabbits. Braz Dent J. 2001;12:158–62.PubMedGoogle Scholar
  42. 42.
    Kauther MD, Hagen S, Bachmann HS, Neuerburg L, Broecker-Preuss M, Hilken G, Grabellus F, Koehler G, von Knoch M, Wedemeyer C. Calcitonin substitution in calcitonin deficiency reduces particle-induced osteolysis. BMC Musculoskelet Disord. 2011;12:186.PubMedCrossRefGoogle Scholar
  43. 43.
    Chen BL, Xie DH, Zheng ZM, Lu W, Ning CY, Li YQ, Li FB, Liao WM. Comparison of the effects of alendronate sodium and calcitonin on bone-prosthesis osseointegration in osteoporotic rats. J Bone Joint Surg Am. 2008;90:824–32.CrossRefGoogle Scholar
  44. 44.
    Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, Rodriguez-Portales JA, Downs RW, Gupta J, Santora AC, Liberman UA. Ten year’s experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med. 2004;350:1189–99.PubMedCrossRefGoogle Scholar
  45. 45.
    Millet PJ, Allen MJ, Bostrom MP. Effects of alendronate on particle-induced osteolysis in a rat model. J Bone Joint Surg Am. 2002;84A:236–49.Google Scholar
  46. 46.
    Sabokbar A, Fujikawa Y, Neale S, Murray DW, Athanasou NA. Human arthroplasty derived macrophages differentiate into osteoclastic bone resorbing cells. Ann Rheum Dis. 1997;56:414–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Shanbhag AS, Hasselman CT, Rubash HE. The John Charnley Award: inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model. Clin Orthop. 1997;344:33–43.PubMedGoogle Scholar
  48. 48.
    Von Knoch M, Wedemeyer C, Pingsmann A, von Knoch F, Hilken G, Sprecher C, Henschke F, Barden B, Loer F. The decrease of particle-induced osteolysis after a single dose of bisphosphonate. Biomaterials. 2005;26:1803–8.CrossRefGoogle Scholar
  49. 49.
    Von Knoch F, Eckhardt C, Alabre CI. Anabolic effects of bisphosphonates on peri-implant bone stock. Biomaterials. 2007;28:3549–59.CrossRefGoogle Scholar
  50. 50.
    Miyaji T, Nakase T, Azuma Y, Shimizu N, Uchiyama Y, Yoshikawa H. Alendronate inhibits bone resorption at the bone-screw interface. Clin Orthop. 2005;430:195–201.PubMedGoogle Scholar
  51. 51.
    Bobyn JD, McKenzie K, Karabasz D, Krygier JJ, Tanzer M. Locally delivered bisphosphonate for enhancement of bone formation and implant fixation. J Bone Joint Surg Am. 2009;91A(S6):23–31.CrossRefGoogle Scholar
  52. 52.
    Tanzer M, Karabasz D, Krygier JJ, Cohen R, Bobyn JD. The Otto Aufranc Award: bone augmentation around and within porous implants by local bisphosphonate elution. Clin Orthop. 2005;441:30–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Peter B, Gauthier O, Laïb S, Bujoli B, Guicheux J, Janvier P, van Lenthe GH, Müller R, Zambelli PY, Bouler JM, Pioletti DP. Local delivery of bisphosphonate from coated orthopedic implants increases implants mechanical stability in osteoporotic rats. J Biomed Mater Res A. 2006;76(1):133–43.PubMedGoogle Scholar
  54. 54.
    Jakobsen T, Baas J, Bechtold JE, Elmengaard B, Søballe K. The effect of soaking allograft in bisphosphonate: a pilot dose–response study. Clin Orthop. 2010;468:867–74.PubMedCrossRefGoogle Scholar
  55. 55.
    McKenzie K, Dennis Bobyn J, Roberts J, Karabasz D, Tanzer M. Bisphosphonate remains highly localized after elution from porous implants. Clin Orthop. 2011;469:514–22.PubMedCrossRefGoogle Scholar
  56. 56.
    Wilkinson JM, Eagleton AC, Stockley I, Peel NF, Hamer AJ, Eastell R. Effect of pamidronate on bone turnover and implant migration after total hip arthroplasty; a randomized trial. J Orthop Res. 2005;23:1–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Zhang Q, Badell IR, Schwarz EM, Boulukos KE, Yao Z, Boyce BF, Xing L. Tumor necrosis factor prevents alendronate-induced osteoclast apoptosis in vivo by stimulating Bcl-xL expression through Ets-2. Arthritis Rheum. 2005;52:2708–18.PubMedCrossRefGoogle Scholar
  58. 58.
    Moroni A, Faldini C, Hoang-Kim A, Pegreffi F, Giannini S. Alendronate improves screw fixation in osteoporotic bone. J Bone Joint Surg Am. 2007;89A:96–101.CrossRefGoogle Scholar
  59. 59.
    Wang CJ, Wang JW, Weng LH, Hsu CC, Huang CC, Chen HS. The effect of alendronate on bone mineral density in the distal part of the femur and proximal part of the tibia after total knee arthroplasty. J Bone Joint Surg Am. 2003;85:2121–6.PubMedGoogle Scholar
  60. 60.
    Peter B, Ramaniraka N, Rakotomanana LR, Zambelli PY, Pioletti DP. Peri-implant bone remodeling after total hip replacement combined with systemic alendronate treatment: a finite element analysis. Comput Methods Biomech Biomed Engin. 2004;7:73–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Yamaguchi K, Masuhara K, Yamasaki S, Nakai T, Fuji T. Cyclic therapy with etidronate has a therapeutic effect against local osteoporosis after cementless total hip arthroplasty. Bone. 2003;33:144–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Prieto-Alhambra D, Javaid MK, Judge A, Murray D, Carr A, Cooper C, Arden NK. Association between bisphosphonate use and implant survival after primary total arthroplasty of the knee or hip: population based retrospective cohort study. BMJ. 2011;343:d7222.PubMedCrossRefGoogle Scholar
  63. 63.
    Zeng Y, Lai O, Shen B, Yang J, Zhou Z, Kang P, Pei F. A systematic review assessing the effectiveness of alendronate in reducing periprosthetic bone loss after cementless primary THA. Orthopedics. 2011;34(4). doi: 10.3928/01477447-20110228-09.
  64. 64.
    Ni GX, Lu WW, Xu B, Chiu KY, Yang C, Li ZY, Lam WM, Luk KD. Interfacial behaviour of strontium-containing hydroxyapatite cement with cancellous and cortical bone. Biomaterials. 2006;27:5127–33.PubMedCrossRefGoogle Scholar
  65. 65.
    Maïmoun L, Brennan TC, Badoud I, Dubois-Ferriere V, Rizzoli R, Ammann P. Strontium ranelate improves implant osseointegration. Bone. 2010;46:1436–41.PubMedCrossRefGoogle Scholar
  66. 66.
    Li Y, Feng G, Gao Y, Luo E, Liu X, Hu J. Strontium ranelate treatment enhances hydroxyapatite-coated titanium screws fixation in osteoporotic rats. J Orthop Res. 2010;28:578–82.PubMedCrossRefGoogle Scholar
  67. 67.
    Bauer DC. Review: human parathyroid hormone reduces fractures and increases bone mineral density in severe osteoporosis. ACP J Club. 2006;145:71.PubMedGoogle Scholar
  68. 68.
    Iolascon G, Gimigliano F, Resmini G. Teriparatide and orthopedic surgery. Aging Clin Exp Res. 2007;19(S4):22–5.PubMedGoogle Scholar
  69. 69.
    Knecht TP. Teriparatide and fracture healing in cortical bone. Endocr Pract. 2004;10:293.PubMedGoogle Scholar
  70. 70.
    Skripitz R, Aspenberg P. Implant fixation enhanced by intermittent treatment with parathyroid hormone. J Bone Joint Surg Br. 2001;83B:437–40.CrossRefGoogle Scholar
  71. 71.
    Daugaard H, Elmengaard B, Andreassen TT, Baas J, Bechtold JE, Soballe K. The combined effect of parathyroid hormone and bone graft on implant fixation. J Bone Joint Surg Br. 2011;93B:131–9.Google Scholar
  72. 72.
    Daugaard H, Elmengaard B, Andreassen T, Bechtold J, Lamberg A, Soballe K. Parathyroid hormone treatment increases fixation of orthopedic implants with gap healing: a biomechanical and histomorphometric canine study of porous coated titanium alloy implants in cancellous bone. Calcif Tissue Int. 2011;88:294–303.PubMedCrossRefGoogle Scholar
  73. 73.
    Kuchler U, Luvizuto ER, Tangl S, Watzek G, Gruber R. Short-term teriparatide delivery and osseointegration: a clinical feasibility study. J Dent Res. 2011;90:1001–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Lynch SE, Buser D, Hernandez RA, Weber HP, Stich H, Fox CH, Williams RC. Effects of the platelet-derived growth factor/insulin-like growth factor-I combination on bone regeneration around titanium dental implants. Results of a pilot study in beagle dogs. J Periodontol. 1991;62:710–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Lamberg A, Schmidmaier G, Soballe K, Elmengaard B. Locally delivered TGF-beta1 and IGF-1 enhance the fixation of titanium implants; a study in dogs. Acta Orthop Scand. 2006;77:799–805.CrossRefGoogle Scholar
  76. 76.
    Mannai C. Early implant loading in severely resorbed maxilla using xenograft, autograft, and platelet-rich plasma in 97 patients. J Oral Maxillofac Surg. 2006;64:1420–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Sumner DR, Turner TM, Urban RM, Vordi AS, Inoue N. Additive enhancement of implant fixation following combined treatment with rhTGF-beta2 and rhBMP-2 in a canine model. J Bone Joint Surg Am. 2006;88A:806–17.CrossRefGoogle Scholar
  78. 78.
    Cole BJ, Bostrom MP, Pritchard TL, Sumner DR, Tomin E, Lane JM, Weiland AJ. Use of bone morphogenetic protein 2 on ectopic porous coated implants in the rat. Clin Orthop. 1997;345:219–28.PubMedGoogle Scholar
  79. 79.
    Koempel JA, Patt BS, O’Grady K, Wozney J, Toriumi DM. The effect of recombinant human bone morphogenetic protein-2 on the integration of porous hydroxyapatite implants with bone. J Biomed Mater Res. 1998;41:359–63.PubMedCrossRefGoogle Scholar
  80. 80.
    Jennissen HP. Accelerated and improved osteointegration of implants biocoated with bone morphogenetic protein 2 (BMP2). Ann N Y Acad Sci. 2002;961:139–42.PubMedCrossRefGoogle Scholar
  81. 81.
    Becker J, Kirsch A, Schwarz F, Chatzinikolaidou M, Rothamel D, Lekovic V, Laub M, Jennissen HP. Bone apposition to titanium implants biocoated with recombinant human bone morphogenetic protein-2 (rhBMP-2). A pilot study in dogs. Clin Oral Investig. 2006;10:217–24.PubMedCrossRefGoogle Scholar
  82. 82.
    Lind M, Overgaard S, Song Y, Goodman SB, Bunger C, Soballe K. osteogenic protein 1 device stimulates bone healing to hydroxyapatite-coated and titanium implants. J Arthroplasty. 2000;15:339–46.PubMedCrossRefGoogle Scholar
  83. 83.
    Zhang R, An Y, Toth CA, Draugh RA, Dimaano NM, Hawikns MV. Osteogenic protein-1 enhances osseointegration of titanium implants coated with peri-apatite in rabbit femoral defect. J Biomed Mater Res B Appl Biomater. 2004;71:408–13.PubMedCrossRefGoogle Scholar
  84. 84.
    Sumner DR, Turner TM, Purchio AF, Gombotz WR, Urban RM, Galante JO. Enhancement of bone ingrowth by transforming growth factor-beta. J Bone Joint Surg Am. 1995;77A:1135–47.Google Scholar
  85. 85.
    De Ranieri A, Virdi AS, Kuroda S, Shott S, Leven RM, Hallab NJ, Sumner DR. Local application of rhTGF-beta2 enhances peri-implant bone volume and bone-implant contact in a rat model. Bone. 2005;37:55–62.PubMedCrossRefGoogle Scholar
  86. 86.
    Salata LA, Burgos PM, Rasmusson L, Novaes AB, Papalexiou V, Dahlin C, Sennerby L. Osseointegration of oxidized and turned implants in circumferential bone defects with and without adjunctive therapies: an experimental study on BMP-2 and autogenous bone graft in the dog mandible. Int J Oral Maxillofac Surg. 2007;36:62–71.PubMedCrossRefGoogle Scholar
  87. 87.
    Sakakura CE, Marcantonio Jr E, Wenzel A, Scaf G. Influence of cyclosporine A on quality of bone around integrated dental implants: a radiographic study in rabbits. Clin Oral Implants Res. 2007;8:34–9.CrossRefGoogle Scholar
  88. 88.
    Eder A, Watzek G. Treatment of a patient with severe osteoporosis and chronic polyarthritis with fixed implant-supported prosthesis: a case report. Int J Oral Maxillofac Implants. 1999;15:587–90.Google Scholar
  89. 89.
    McDonald AR, Pogrel MA, Sharma A. effects of chemotherapy on osseointegration of implants: a case report. J Oral Implantol. 1998;24:11–3.PubMedCrossRefGoogle Scholar
  90. 90.
    Callahan BC, Lisecki EJ, Banks RE, Dalton JE, Cook SD, Wolff JD. The effect of warfarin on the attachment of bone to hydroxyapatite-coated and uncoated porous implants. J Bone Joint Surg Am. 1995;77A:225–30.Google Scholar
  91. 91.
    Cook SD, Barrack RL, Dalton JE, Thomas KA, Brown TD. Effects of indomethacin on biologic fixation of porous-coated titanium implants. J Arthroplasty. 1995;10:351–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Ioannis K. Triantafillopoulos
    • 1
  • Nikolaos A. Papaioannou
    • 1
  1. 1.Laboratory for the Research of Musculoskeletal System, Medical SchoolUniversity of AthensAthensGreece

Personalised recommendations