Skip to main content

Soft Collisions

  • Chapter
  • First Online:
  • 1384 Accesses

Abstract

This chapter prevents a number of theories associated with soft collisions, that is, those interactions between a charged projectile and the entire atom (which Bohr referred to as nuclear collisions). We begin with applying our earlier analysis of projectile momentum and atomic electron screening in elastic scatter to a new analysis of the conditions of soft collisions. Then, the theory of soft-collision energy loss is developed using classical mechanics. First, the Rutherford formula is developed. This is followed by a thorough analysis of the Bohr theory from both classical and semi-classical points of view. As an aside, the Fermi model of soft-collision energy loss, which is based upon classical electrodynamic theory, is investigated not only on its own right but also for the foundations that it provides for the derivation of the Bethe quantum-mechanical theory of soft-collision energy loss and the effects of a condensed medium upon collision energy loss as discussed in Chap. 12. Bethe’s theory is then developed. Initially, this is for the nonrelativistic regime and is then extended to relativistic energies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Feynman noted the interesting quandary in orbital velocity that would arise for any elements that exist with Z > 137.

  2. 2.

    And not to be confused with the Rutherford differential cross section we derived in Chap. 4.

  3. 3.

    That the units of the right-hand side of (8.115) should be equal to that of energy may perhaps seem peculiar to the reader, but may be verified using dimensional analysis. To confirm that this is so, first, using SI units, note that the unit for the Fourier transform of the electric field is V•s/m and that that for e 2E(ω 0)∣2 is equal to kg2•m2•s−2. Hence, the unit for the right-hand side of (8.99) is kg•m2•s−2= N•m = J.

  4. 4.

    For the astute reader applying dimensional analysis mentally throughout these derivations, the SI units of this result in (r,t) space are indeed C/m3 as the units of the Dirac δ-function are the reciprocal of its argument.

  5. 5.

    This derivation emphasises the fact that the unit of the linear stopping power is that of force.

  6. 6.

    These ‘shell’ correction factors are discussed in Chap. 12.

  7. 7.

    The energy of the ground state is considered to be equal to zero.

Bibliography

  • Attix FH. Introduction to radiological physics and radiation dosimetry. New York: Wiley; 1986.

    Google Scholar 

  • Berger MJ, Seltzer SM. Stopping powers and ranges of electrons and positrons. NBSIR 82-2550-A. Washington, DC: National Bureau of Standards; 1983.

    Google Scholar 

  • Bjorken JD, Drell SD. Relativistic quantum mechanics. New York: McGraw-Hill; 1964.

    Google Scholar 

  • Bloch F. Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie. Ann Phys. 1933a;16:285–320.

    Google Scholar 

  • Brice DK, Sigmund P. Secondary electron spectrum from dielectric theory. Matt Fys Medd Dan Vid Selsk. 1980;40:1–34.

    Google Scholar 

  • Enz PC, editor. Pauli lectures on physics: vol 6. Selected topics on field quantization. Cambridge: Wolfgang Pauli. Massachusetts Institute of Technology; 1973.

    Google Scholar 

  • Gould RJ. Electromagnetic processes. Princeton: Princeton University Press; 2006.

    Google Scholar 

  • Green G. An essay on the application of mathematical analysis to the theories of electricity and magnetism; 1828.

    Google Scholar 

  • ICRU. Stopping powers and ranges for electrons and positrons. ICRU Report 37. Bethesda: International Commission on Radiation Units and Measurements; 1984.

    Google Scholar 

  • ICRU. Stopping powers and ranges for protons and alpha particles. ICRU Report 49. Bethesda: International Commission on Radiation Units and Measurements; 1993.

    Google Scholar 

  • Jordan EG, Balmain KG. Electromagnetic waves and radiating systems. Englewood Cliffs: Prentice Hall Inc; 1968.

    Google Scholar 

  • Ziegler JF. The stopping of energetic light ions in elemental matter. J Appl Phys. 1999;85:1249–72.

    Google Scholar 

References

  • Abramowitz M, Stegun IA, editors. Handbook of mathematical functions. New York: Dover Publications; 1972.

    Google Scholar 

  • Ahlen SP. Theoretical and experimental aspects of the energy loss of relativistic heavy ionizing particles. Rev Mod Phys. 1980;52:121–73 (erratum Rev Mod Phys 1980; 52: 653).

    Article  CAS  Google Scholar 

  • Anderson C, Neddermeyer S. New evidence for the existence of a particle intermediate between the proton and electron. Phys Rev. 1937;52:1003–4.

    Article  Google Scholar 

  • Bethe HA. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann Phys. 1930;5:324–400.

    Google Scholar 

  • Bethe HA. Bremsformel für Elektronen relativisticher Geschwindigkeit. Z Physik. 1932;76:293–9.

    Article  CAS  Google Scholar 

  • Bloch F. Zur Bremsun rasch bewegter Telichen beim Durchgang durch Materie. Ann Physik. 1933;16:285–320.

    Article  Google Scholar 

  • Bohr N. On the theory of the decrease of velocity of moving electrified particles on passing through matter. Philos Mag. 1913;25:10–31.

    CAS  Google Scholar 

  • Bohr N. On the decrease of velocity of swiftly moving electrified particles in passing through matter. Philos Mag. 1915;30:581–612.

    CAS  Google Scholar 

  • Bohr N. The penetration of atomic particles through matter. Matt Fys Medd Dan Vild Selsk. 1948;18(8):1–144.

    Google Scholar 

  • Darwin CG. A theory of the absorption and scattering of the α rays. Philos Mag. 1912;23:901–21.

    CAS  Google Scholar 

  • Fano U. Penetration of protons, alpha particles and mesons. Annu Rev Nucl Sci. 1963;13:1–66.

    Article  CAS  Google Scholar 

  • Fermi E. The absorption of mesotrons in air and in condensed materials. Phys Rev. 1939;56:1242.

    Article  CAS  Google Scholar 

  • Fermi E. The ionization loss of energy in gases and in condensed materials. Phys Rev. 1940;47:485–92.

    Article  Google Scholar 

  • Fernández-Vaera JM. Monte Carlo simulation of the inelastic scattering of electrons and positrons using optical-data models. Rad Phys Chem. 1998;53:235–45.

    Article  Google Scholar 

  • Gaunt JA. The stopping power of hydrogen atoms of α-particles according to the new quantum theory. Proc Camb Philos Soc. 1927;23:732–54.

    Article  CAS  Google Scholar 

  • Henderson GH. The decrease in energy of α particles passing through matter. Philos Mag. 1922;44:680–8.

    CAS  Google Scholar 

  • Jackson JD. Classical electrodynamics. New York: Wiley; 1999.

    Google Scholar 

  • McParland BJ. Nuclear medicine radiation dosimetry: advanced theoretical principles. London: Springer; 2010.

    Book  Google Scholar 

  • Neufeld J. Electron capture and loss by moving ions in dense media. Phys Rev. 1954;96:1470–8.

    Article  CAS  Google Scholar 

  • Rossi B. High-energy particles. New York: Prentice-Hall; 1952.

    Google Scholar 

  • Segrè E. Nuclei and particles. 2nd ed. Reading: Benjamin/Cummings; 1977.

    Google Scholar 

  • Sigmund P. Low-velocity limit of Bohr’s stopping power formula. Phys Rev A. 1996;54:3113–17.

    Article  PubMed  CAS  Google Scholar 

  • Sigmund P. Particle penetration and radiation effects. Berlin: Springer; 2006.

    Google Scholar 

  • Slater JC. Atomic radii in crystals. J Chem Phys. 1964;41:3199–204.

    Article  CAS  Google Scholar 

  • Thomson JJ. Ionization by moving electrified particles. Philos Mag. 1912;6–23:449.

    Google Scholar 

  • Thorsen J (ed). The penetration of charged particles through matter. In: Niels Bohr: collected works. Amsterdam: Elsevier NV; 1987.

    Google Scholar 

  • Uehling EA. Penetration of heavy charged particles in matter. Annu Rev Nucl Sci. 1954;4:315–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

McParland, B.J. (2014). Soft Collisions. In: Medical Radiation Dosimetry. Springer, London. https://doi.org/10.1007/978-1-4471-5403-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5403-7_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5402-0

  • Online ISBN: 978-1-4471-5403-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics