Skip to main content

Total and Restricted Collision Stopping Powers and Theory of the Mean Energy Expended to Create an Ion Pair

  • Chapter
  • First Online:
Medical Radiation Dosimetry

Abstract

This chapter combines the soft- and hard-collision stopping powers derived in the two previous chapters to yield the total collision stopping power (but still not accounting for the higher-order effects to be studied in Chap. 12). For electron projectiles, we consider the restricted hard-collision stopping power derived in Chap. 9 to provide the restricted stopping power for electrons, a quantity of importance in practical radiation dosimetry evaluations. The main part of this chapter is, however, assigned to the theoretical investigation of the mean energy required to create an ion pair. This is a fundamental quantity not only to practical radiation dosimetry but also to our understanding of the ionisation resulting from the interaction of radiation with matter. We develop the generalised Fowler equation, which is essentially a transport equation, to yield the number of ion pairs created per unit energy transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The symbol for electric charge used here, Q, is not to be confused with that for energy transfer.

  2. 2.

    This is not the same as the mean excitation energy discussed in earlier chapters.

Bibliography and Further Reading

  • Attix FH. Introduction to radiological physics and radiation dosimetry. New York: Wiley; 1986.

    Google Scholar 

  • Berger SM, Bergstrom Jr PM. Changes in the U.S. primary standard for the air kerma from gamma ray beams. J Res Natl Inst Stand Technol. 2003;108:359–81.

    Google Scholar 

  • Inokuti M, Douthat DA, Rau ARP. Degradation spectra and ionisation yields of electrons in gases. In: Booz J, Ebert HG, Smith BGR, editors. Proceedings of the fifth symposium on microdosimetry, Report No EUR-5452. Luxembourg: Commission of the European Communities; 1976.

    Google Scholar 

  • Johns HE, Cunningham JR. The physics of radiology. 4th ed. Springfield: Charles C Thomas; 1983.

    Google Scholar 

  • McGinnies RT. Energy spectrum resulting from electrons slowing down, NBS Circular No 597. Washington, DC: National Bureau of Standards; 1959.

    Google Scholar 

  • PodgorÅ¡ak EB. Radiation physics for medical physicists. Berlin: Springer; 2010.

    Google Scholar 

  • Rohrlich F, Carlson BC. Positron-electron differences in energy loss and multiple scattering. Phys Rev. 1954;3:38–44.

    Google Scholar 

  • Thomson JJ, Thomson GP. Conduction of electricity through gases, vol. II. 3rd ed. Cambridge: Cambridge University Press; 1933.

    Google Scholar 

References

  • Bethe H. Zur theorie des durchgangs schneller korpuskularstrahlen durch materie. Ann Phys. 1930;5:324–400.

    Google Scholar 

  • Douthat DA. Energy deposition by electrons and degradation spectra. Radiat Res. 1975;64:141–52.

    Article  PubMed  CAS  Google Scholar 

  • Erskine GA. Calculation of the energy per ion pair for alpha-particles in helium. Proc R Soc Lond A. 1954;224:362–73.

    Article  CAS  Google Scholar 

  • Fano U. On the theory of ionization yield of radiations in different substances. Phys Rev. 1946;70:44–52.

    Article  CAS  Google Scholar 

  • Fano U, Spencer LV. Quasi-scaling of electron degradation spectra. Int J Radiat Phys Chem. 1975;7:63–76.

    Article  CAS  Google Scholar 

  • Fowler RH. Contributions to the theory of the motion of α-particles through matter. Part II. Ionizations. Proc Camb Philos Soc. 1923;21:521–40.

    CAS  Google Scholar 

  • ICRU. Average energy required to produce an ion pair. Report No 31. Bethesda: International Commission on Radiation Units and Measurements; 1979.

    Google Scholar 

  • ICRU. Radiation quantities and units. Report No 33. Bethesda: International Commission on Radiation Units and Measurements; 1980.

    Google Scholar 

  • ICRU. Stopping powers for electrons and positrons. Report No 37. Bethesda: International Commission on Radiation Units and Measurements; 1984.

    Google Scholar 

  • ICRU. Stopping powers and ranges for protons and alpha particles. Report No 49. Bethesda: International Commission on Radiation Units and Measurements; 1993.

    Google Scholar 

  • ICRU. Stopping of ions heavier than helium. Report No 73. Bethesda: International Commission on Radiation Units and Measurements; 2005.

    Google Scholar 

  • Inokuti M. Ionization yields in gases under electron irradiation. Radiat Res. 1975;64:6–22.

    Article  PubMed  CAS  Google Scholar 

  • Miller WF. Mean energy per ion pair for electrons in helium. Bull Am Phys Soc. 1956;1:202.

    Google Scholar 

  • Platzman RL. Total ionization in gases by high-energy particles: an appraisal of our understanding. Int J Appl Radiat Isot. 1961;10:116–27.

    Article  Google Scholar 

  • Spencer LV, Fano U. Energy spectrum resulting from electron slowing down. Phys Rev. 1954;93:1172–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

McParland, B.J. (2014). Total and Restricted Collision Stopping Powers and Theory of the Mean Energy Expended to Create an Ion Pair. In: Medical Radiation Dosimetry. Springer, London. https://doi.org/10.1007/978-1-4471-5403-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5403-7_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5402-0

  • Online ISBN: 978-1-4471-5403-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics