Skip to main content

Wind Power Generation and Control

  • Chapter
  • First Online:
Dynamic Modeling, Simulation and Control of Energy Generation

Part of the book series: Lecture Notes in Energy ((LNEN,volume 20))

Abstract

This chapter focuses on wind power generation, the components of a typical horizontal axis wind turbine, basics of wind power generation, the wind field, its characteristics and spectrum as well as the dynamics and aeroelasticity of the rotor and the tower and the dynamics and hydrodynamics of the floater and the supporting structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Khalil AG, Lee D-C (2008) MPPT control of wind generation systems based on estimated wind speed using SVR. IEEE Trans Ind Electron 55(3):1489–1490

    Article  Google Scholar 

  • Abo-Khalil AG, Lee D-C, Seok J-K (2004) Variable speed wind power generation system based on fuzzy logic control for maximum output power tracking. In: Proceedings of 2004 IEEE 35th annual power electronics specialists conference-PESC 04, vol 3. Aachen, Germany, pp 2039–2044

    Google Scholar 

  • Abramowitz M, Stegun IA (eds) (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, New York, ISBN 978-0-486-61272-0

    Google Scholar 

  • Bhowmik S, Spee R, Enslin JHR (1999) Performance optimization for doubly fed wind power generation systems. IEEE Trans Ind Appl 35(4):949–958

    Article  Google Scholar 

  • Bisplinghoff RL, Ashley H, Halfman RL (1955) Aeroelasticity. Addison-Wesley, Cambridge

    MATH  Google Scholar 

  • Boukhezzar B, Siguerdidjane H (2005) Nonlinear control of variable speed wind turbines without wind speed measurement. In: Proceedings of 44th IEEE conference on decision and control. Seville, Spain, pp 3456–3461

    Google Scholar 

  • Bramwell ARS, Done G, Balmford D (2001) Bramwell’s helicopter dynamics, 2nd edn. Butterworth-Heinemann, Oxford. ISBN 0-7506-5075-3

    Google Scholar 

  • Bretschneider CL (1963) A one-dimensional gravity wave spectrum. In: Proceedings of a conference on ocean wave spectra. Prentice-Hall, Englewood Cliffs, pp 41–56

    Google Scholar 

  • Burton T, Sharpe D, Jenkins N, Bossanyi E (2001) Wind energy handbook. John Wiley & Sons Ltd, England

    Book  Google Scholar 

  • Chu C (1951) The effect of initial twist on the torsional rigidity of thin prismatical bars and tubular members. In: Proceedings of the 1st US national congress of applied mechanics. pp 265–269

    Google Scholar 

  • Connor B, Leithead WE (1993) Investigation of fundamental trade-off in tracking the Cp max curve of a variable speed wind turbine. In: Proceedings of the 12th British wind energy conference. pp 313–7

    Google Scholar 

  • Curti G, Risitano A (1979) Coupled free torsional and axial vibration of pre-twisted bars. Meccanica 157–162

    Google Scholar 

  • Datta R, Ranganathan VT (2003) A method of tracking the peak power points for a variable speed wind energy conversion system. IEEE Trans Energy Convers 18(1):163–166

    Article  Google Scholar 

  • Drela M (1989) XFOIL: an analysis and design system for low Reynolds number airfoils. In: Mueller TJ (ed) Low Reynolds number aerodynamics. Lecture notes in engineering, vol 54. Springer, New York, pp 1–12

    Google Scholar 

  • Drela M, Giles MB (1987) Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA J 25(10):1347–1355

    Article  MATH  Google Scholar 

  • Eppler R (1990) Airfoil design and data. Springer, New York

    Book  Google Scholar 

  • Esram T, Kimball JW, Krein PT, Chapman PL, Midya P (2006) Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control. IEEE Trans Power Electron 21(5):1282–1291

    Article  Google Scholar 

  • Floros MW (2000) Elastically tailored composite rotor blades for stall alleviation and vibration reduction. Ph.D. dissertation, The Pennsylvania State University, Department of aerospace engineering

    Google Scholar 

  • Fossen TI (1994) Guidance and control of ocean vehicles. Wiley, New York

    Google Scholar 

  • Fossen TI, Smogeli ØN (2004) Nonlinear time-domain strip theory formulation for low-speed manoeuvring and station-keeping. Model Ident Control 25(4):201–221

    Article  Google Scholar 

  • Fox ME (1993) Blade mounted actuation for helicopter rotor control. M.Sc. thesis, Massachusetts Institute of Technology, pp 83–125

    Google Scholar 

  • Friedmann PP (1977) Recent developments in rotary-wing aeroelasticity. AIAA J Aircr 14–11:1027–1041

    Article  Google Scholar 

  • Friedmann PP (2003) Rotary wing aeroelasticity: a historical perspective. In: AIAA paper no. 2003–1817, Proceedings 44th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference. Norfolk, VA. (Special 1 hour invited paper-in the dynamics specialist part of the conference)

    Google Scholar 

  • Friedmann PP, Hodges DH (2003) Rotary wing aeroelasticity—a historical perspective. In: Proceedings of 10th international workshop on aeroelasticity of rotorcraft systems, Atlanta, Georgia

    Google Scholar 

  • Friedmann P, Shamie J (1975) Aeroelastic stability of trimmed helicopter blades in forward flight. Paper presented at the 1st European rotorcraft and powered lift aircraft forum, University of Southampton, England

    Google Scholar 

  • Giguére P, Selig MS (1998) New airfoils for small horizontal axis wind turbines. ASME J Sol Energy Eng 120:108–114

    Article  Google Scholar 

  • Hasselman K et al (1973) Measurements of wind-wave growth and swell decay during the joint north sea wave project (JONSWAP). Deutschen Hydrographischen Zeitschrift, Supplement A, 8(12):95ff

    Google Scholar 

  • Hodges DH (1980) Torsion of pretwisted beams due to axial loading. J App Mech 47:393–397

    Article  MATH  Google Scholar 

  • Hohm RME (2003) Comparative study of maximum power point tracking algorithms. Prog Photovolt: Res Appl 47–62

    Google Scholar 

  • Houbolt JC, Brooks GW (1957) Differential equations of motion for combined flapwise bending, chordwise bending, and torsion of twisted nonuniform rotor blades. NACA-TN-3905

    Google Scholar 

  • Jou H-L, Wu K-D, Wu J-C, Shen J-M (2008) Simplified maximum power point tracking method for the grid-connected wind power generation system. Electr Power Compon Syst 36(11):1208–1217

    Article  Google Scholar 

  • Kawabe I, Morimoto S, Sanada M (2007) Output maximization control of wind generation system applying square-wave operation and sensorless control. In: Proceedings of power conversion conference, vol 1. Nagoya, Japan, pp 203–209

    Google Scholar 

  • Kaza KRV, Kvaternik RG (1977) Nonlinear flap-lag axial equations of a rotating beam. AIAA J 15(6):871–874

    Article  Google Scholar 

  • Kaza KRV, Kvaternik RG (1979) Examination of the flap-lag stability of rigid articulated rotor blades. J Aircr 16(12):79–4150

    Article  Google Scholar 

  • Kosmatka JB (1992) Extension-bend-twist coupling behaviour of nonhomogeneous anisotropic beams with initial twist. AIAA J 30(2):519–527

    Article  MATH  Google Scholar 

  • Koutroulis E, Kalaitzakis K (2006) Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Trans Ind Electron 53(2):486–494

    Article  Google Scholar 

  • Krenk S (1983) The torsion-extension coupling in pretwisted elastic beams. Int J Solids Struct 19(1):67–72

    Article  MATH  Google Scholar 

  • Lee C-Y, Shen Y-X, Cheng J-C, Chang C-W, Li Y–Y (2009) Optimization method based MPPT for wind power generators. World Acad Sci Eng Technol 60:169–172

    Google Scholar 

  • Liu K-C, Friend J, Yeo L (2009) The axial–torsional vibration of pretwisted beams. J Sound Vib 321:115–136

    Article  Google Scholar 

  • Manwell JF, McGowan JG, Rogers AL (2010) Wind energy explained, theory, design and application, 2nd edn. Wiley, UK

    Google Scholar 

  • Miley SJ (1974) On the design of airfoils for low Reynolds numbers. In: Proceedings of AIAA/MIT/SSA 2nd international symposium of the technology and science of low-speed and motorless flight, soaring society of America. Los Angeles, pp 82–96 also AIAA Paper No. 74-1017

    Google Scholar 

  • Munteanu I, Bratcu AI, Cutululis N-A, Ceanga E (2008) Optimal control of wind energy systems: towards a global approach, 1st edn. Springer, pp 109–128, chapter 5 (In the series on advances in industrial control)

    Google Scholar 

  • Munteanu I, Bratcu AI, Ceanga E (2009) Wind turbulence used as searching signal for MPPT in variable-speed wind energy conversion systems. Renew Energy 34:322–327

    Article  Google Scholar 

  • Newman JN (1977) Marine Hydrodynamics. The MIT Press, Cambridge

    Google Scholar 

  • Ochi M, Hubble E (1976) On six parameter wave spectra. In: Proceedings of 15th international conference on coastal engineering, ICCE, vol 1. Pp 301–328

    Google Scholar 

  • Örs M (2009) Maximum power point tracking for small scale wind turbine with self-excited induction generator. Control Eng Appl Inform (CEAI) 11(2):30–34

    Google Scholar 

  • Padfield GD (1996) Helicopter flight dynamics. Blackwell Science Ltd, Oxford

    Google Scholar 

  • Pierson WJ, Moskowitz L (1964) A proposed spectral form of fully developed wind seas based upon similarity theory of S. A. Kitaigorodskii. J Geophys Res 69

    Google Scholar 

  • Pitt DM, Peters DA (1981) Theoretical predictions of dynamic-inflow derivatives. Vertica 5:21–34

    Google Scholar 

  • Qiao W, Zhou W, Aller JM, Harley RG (2008) Wind speed estimation based sensorless output maximization control for a wind turbine driving a DFIG. IEEE Trans Power Electron 23(3):1156–1169

    Article  Google Scholar 

  • Qiao W, Gong X, Qu L (2009) Output maximization control for DFIG wind turbines without using wind and shaft speed measurements. IEEE Energy Convers Congress Exposition, ECCE 2009, DOI: 10.1109/ECCE.2009.531613:404-410

  • Rosas P (2003) Dynamic influences of wind power on the power system. Ph.D. dissertation, Ørsted Institute, Section of electric power engineering, Technical University of Denmark

    Google Scholar 

  • Rosen A (1983) Theoretical and experimental investigation of the nonlinear torsion and extension of initially twisted bars. J App Mech 50:321–326

    Article  MATH  Google Scholar 

  • Rosen A, Friedmann PP (1977) Nonlinear equations of equilibrium for elastic helicopter and wind turbine blades undergoing moderate deformation UCLA-ENG-7718 (revised June 1977), also published as NASA CR-159478, Dec 1978

    Google Scholar 

  • Rosen A, Friedmann PP (1979) The nonlinear behavior of elastic slender straight beams, undergoing small strains and moderate rotations. ASME J App Mech 46:161–168

    Article  MATH  Google Scholar 

  • Slootweg JG, de Haan SWH, Polinder H, Kling WL (2003) General model for representing variable speed wind turbines in power systems dynamics simulations. IEEE Trans Power Syst 18(1):144–151

    Article  Google Scholar 

  • Sokolnikoff IS (1956) Mathematical theory of elasticity. McGraw-Hill Book Company, New York

    Google Scholar 

  • Tan K, Islam S (2004) Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors. IEEE Trans Energy Convers 19(2):392–398

    Article  Google Scholar 

  • Taraft S, Rekioua D, Aouzellag D (2008) Performances study of the DFIG associated to the variable speed wind turbine connected to the grid. Int J Electr Power Eng 2(5):353–364

    Google Scholar 

  • Tsuiji T (1985) Free vibrations of thin-walled pretwisted beams. Bull JSME 28(239):894–898

    Article  Google Scholar 

  • Van den Heever PD, Oberholzer S, Enslin JHR (1989) High-efficient solar panel/wind turbine converter with maximal power control. Proc Eur Conf Power Electron Appl 663–668

    Google Scholar 

  • Vepa R (2011) Nonlinear, optimal control of a wind turbine generator. IEEE Trans Energy Convers 26(2):468–478

    Article  Google Scholar 

  • Wang Q, Chang L (2004) An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems. IEEE Trans Power Electron 19(5):1242–1248

    Article  Google Scholar 

  • Wehausen JV, Laitone EV (1960) Surface waves. Springer, Berlin

    Google Scholar 

  • Wortmann FX (1974) The quest for high lift. In: Proceedings of AIAA/MIT/SSA 2nd international symposium of the technology and science of low-speed and motorless flight, soaring society of America. Los Angeles, pp 97–101, also AIAA paper no. 74-1018

    Google Scholar 

  • Xu XS, Zhong WX, Zhang HW (1997) The Saint-Venant problem and principle in elasticity. Int J Solids Struct 34(22):2815–2827

    Article  MathSciNet  MATH  Google Scholar 

  • Yu GJ, Jung YS, Choi JY, Kim GS (2003) A novel two-mode MPPT control algorithm based on comparative study of existing algorithms. Sol Energy 455–463

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Vepa .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Vepa, R. (2013). Wind Power Generation and Control. In: Dynamic Modeling, Simulation and Control of Energy Generation. Lecture Notes in Energy, vol 20. Springer, London. https://doi.org/10.1007/978-1-4471-5400-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5400-6_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5399-3

  • Online ISBN: 978-1-4471-5400-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics