Skip to main content

The Respiratory Impedance

  • Chapter
The Human Respiratory System

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 2952 Accesses

Abstract

This chapter treats the basic principles of estimating the respiratory impedance from measurements performed with the forced oscillation lung function test. First, the non-parametric identification of the respiratory impedance is presented by means of spectral analysis. Next, a comparison with most representative parametric models from the literature for assessing respiratory input impedance shows that FO models are more efficient than integer-order models. It is also shown that the FO model in four parameters available from the literature is limited to the low frequency range of estimated impedance, whereas a model in two FO terms is more efficient at mid-range frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bates J (2009) Lung mechanics—an inverse modeling approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Brennan S, Hall G, Horak F, Moeller A, Pitrez P, Franzmann A, Turner S, de Klerk N, Franklin P, Winfield K, Balding E, Stick S, Sly P (2005) Correlation of forced oscillation technique in preschool children with cystic fibrosis with pulmonary inflammation. Thorax 60:159–163

    Article  Google Scholar 

  3. Cavalcanti J, Lopes A, Jansen J, Melo P (2006) Detection of changes in respiratory mechanics due to increasing degrees of airway obstruction in asthma by the forced oscillation technique. Respir Med 100:2207–2219

    Article  Google Scholar 

  4. Coleman T, Li Y (1990) An interior trust region approach for nonlinear minimization subject to bounds. SIAM J Control Optim 6:418–445

    MathSciNet  Google Scholar 

  5. Daroczi B, Hantos Z (1982) An improved forced oscillatory estimation of respiratory impedance. Int J Bio-Med Comput 13:221–235

    Article  Google Scholar 

  6. Delacourt C, Lorino H, Herve-Guillot M, Reinert P, Harf A, Housset B (2000) Use of forced oscillation technique to assess airway obstruction and reversibility in children. Am J Respir Crit Care Med 161(3):730–736

    Article  Google Scholar 

  7. Desager KN, Buhr W, Willemen M (1991) Measurement of total respiratory impedance in infants by the forced oscillation technique. J Appl Physiol 71:770–776

    Google Scholar 

  8. Di Mango AM, Lopes A, Jansen J, Melo P (2006) Changes in respiratory mechanics with increasing degrees of airway obstruction in COPD: detection by forced oscillation technique. Respir Med 100(3):399–410

    Article  Google Scholar 

  9. Diong B, Nazeran H, Nava P, Goldman M (2007) Modelling human respiratory impedance. IEEE Eng Med Biol Mag 26(1):48–55

    Article  Google Scholar 

  10. DuBois AB, Brody A, Lewis D, Brugges B (1956) Oscillation mechanics of lung and chest in man. J Appl Physiol 8:587–594

    Google Scholar 

  11. Evans TM, Rundell K, Beck K, Levine A, Baumann J (2006) Impulse oscillometry is sensitive to bronchoconstriction after eucapnic voluntary hyperventilation or exercise. J Asthma 43(1):49–55

    Article  Google Scholar 

  12. Fabbri LM, Romagnoli M, Corbetta L, Casoni G, Busljetic K, Turato G, Ligabue G, Ciaccia A, Saetta M, Papi A (2003) Differences in airway inflammation in patients with fixed airflow obstruction due to asthma or chronic obstructive pulmonary disease. Am J Respir Crit Care Med 167(3):418–424

    Article  Google Scholar 

  13. Farre R, Peslin R, Oostveen E, Suki B, Duvivier C, Navajas D (1989) Human respiratory impedance from 8 to 256 Hz corrected for upper airway shunt. J Appl Physiol 67:1973–1981

    Google Scholar 

  14. Hogg J, Chu F, Utokaparch S et al. (2004) The nature of small airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350(26):2645–2653

    Article  Google Scholar 

  15. Ionescu C, De Keyser R (2003) A novel parametric model for the human respiratory system. In: Proc. of the IASTED int conf on modelling and simulation, Palm Springs, CA, USA, pp 246–251

    Google Scholar 

  16. Ionescu C, De Keyser R (2008) Parametric models for the human respiratory impedance. J Med Eng Technol 32(4):315–342

    Article  Google Scholar 

  17. Jabloński I, Mroczka J (2009) Frequency domain identification of the respiratory system model during the interrupter technique. Measurement 42:390–398

    Article  Google Scholar 

  18. Jabloński I, Polak A, Mroczka J (2011) Preliminary study on the accuracy of respiratory input impedance measurement using the interrupter technique. Comput Methods Programs Biomed 101:115–125

    Article  Google Scholar 

  19. Lapperre T, Snoeck-Stroband JB, Gosman MME, Stolk J, Sont JK, Jansen DF, Kerstjens HAM, Postma DS, Sterk PJ (2004) Dissociation of lung function and airway inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 170(5):499–504

    Article  Google Scholar 

  20. Lutchen K, Costa K (1990) Physiological interpretation based on lumped element models fit to respiratory impedance data: use of forward—inverse model. IEEE Trans Biomed Eng 37(11):1076–1086

    Article  Google Scholar 

  21. Mead J (1961) Mechanical properties of lungs. Physiol Rev 41:281–330

    Google Scholar 

  22. Morris MJ, Deal LE, Bean DR (1999) Vocal cord dysfunction in patients with exertional dyspnea? Chest 116(6):1676–1682

    Article  Google Scholar 

  23. Navajas D, Farre R, Rotger M, Badia R, Puig-de-Morales M, Montserrata M (1998) Assessment of airflow obstruction during CPAP by means of forced oscillation in patients with sleep apnea. Am J Respir Crit Care Med 157(5):1526–1530

    Article  Google Scholar 

  24. Navajas D, Farre R, Canet J, Rotger M, Sanchis J (1990) Respiratory input Impedance in anesthetized paralyzed patients. J Appl Physiol 69:1372–1379

    Google Scholar 

  25. Northrop R (2002) Non-invasive measurements and devices for diagnosis. CRC Press, Boca Raton

    Google Scholar 

  26. Oostveen E, Macleod D, Lorino H, Farre R, Hantos Z, Desager K, Marchal F (2003) The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J 22:1026–1041

    Article  Google Scholar 

  27. Oustaloup A (1995) La derivation non-entière. Hermes, Paris (in French)

    MATH  Google Scholar 

  28. Petak F, Babik B, Asztalos T, Hall G, Deak Z, Sly P, Hantos Z (2003) Airway and tissue mechanics in anesthetized paralyzed children. Pediatr Pulmonol 35(3):169–176

    Article  Google Scholar 

  29. Pride NB (2001) Tests of forced expiration and inspiration. Clin Chest Med 22(4):599–622

    Article  Google Scholar 

  30. Schoukens J, Pintelon R (2012) System identification. A frequency domain approach, 2nd edn. IEEE Press, New Jersey

    Google Scholar 

  31. Sly P, Hayden M, Petak F, Hantos Z (1996) Measurement of low frequency respiratory impedance in infants. Am J Respir Crit Care Med 156(4-part1):1172–1177

    Google Scholar 

  32. Smith HJ, Reinhold P, Goldman MD (2005) Forced oscillation technique and impulse oscillometry. Eur Respir Monogr 31:72–105

    Article  Google Scholar 

  33. Thamrin C, Finucane K, Singh B, Hantos Z, Sly P (2007) Volume dependence of high-frequency respiratory mechanics in healthy adults. Ann Biomed Eng 36(1):162–170

    Article  Google Scholar 

  34. Thamrin C, Albu G, Sly P, Hantos Z (2009) Negative impact of the noseclip on high-frequency respiratory impedance measurements. Respir Physiol Neurobiol 165:115–118

    Article  Google Scholar 

  35. Van Noord J (1990) Oscillations mechanics of the respiratory system: clinical applications and modelling. Doctoral Thesis, 189 pp 

    Google Scholar 

  36. Van De Woestijne K, Desager K, Duivermanand E, Marshall F (1994) Recommendations for measurement of respiratory input impedance by means of forced oscillation technique. Eur Respir Rev 4:235–237

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Ionescu, C.M. (2013). The Respiratory Impedance. In: The Human Respiratory System. Series in BioEngineering. Springer, London. https://doi.org/10.1007/978-1-4471-5388-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5388-7_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5387-0

  • Online ISBN: 978-1-4471-5388-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics