Skip to main content

Advanced Magnetic Resonance Imaging of Cartilage Repair

  • Chapter
  • First Online:
Developing Insights in Cartilage Repair

Abstract

Articular cartilage injuries are common findings within different joints and patients benefit from optimal diagnosis and treatment. Magnetic resonance imaging (MRI) has become the method of choice for diagnosis of chondral injuries and for the follow-up of patients after cartilage repair surgery. Thus, early and precise diagnosis together with surgical treatment options may offer a possibility for patients with cartilage defects to avoid OA or to delay the progression of OA. Therefore, widespread cartilage repair techniques, including arthroscopic or open surgical approaches as well as marrow-stimulation techniques, osteochondral grafting, and chondrocyte implantation/transplantation, require knowledgeable and high quality follow-up.

The present chapter provides an overview of the current state of the art of MRI in patients with cartilage injuries or after cartilage repair. Initially an overview about the pre-requirements of high quality MR imaging of articular cartilage and its repair will be provided. Then cartilage sensitive MR protocols will be introduced and described including basic MR sequences and new three-dimensional isotropic approaches. Morphological post-operative cartilage repair MR imaging will be provided, again based on standard and advanced MR techniques. Special focus will be given on post-operative scoring with the MR observation of cartilage repair tissue (MOCART) score. Furthermore the ultra-structure of the repair tissue and the surrounding cartilage can be assessed non-invasively by means of biochemical MRI techniques such as delayed Gadolinium enhanced MRI of cartilage (dGEMRIC), T2 mapping, T1 rho, diffusion weighted imaging or other techniques. These new MR methodologies as well as their sensitivity to specific components of articular cartilage and the repair tissue will be provided and discussed. Additionally examples of other advanced or future options will be given, such as biomechanical MRI approaches and MRI of animal models after cartilage repair. Concluding the differences of the various cartilage repair techniques with respect to their imaging appearance will be presented and discussed. Bringing these advanced MR imaging methods into the diagnosis and treatment of cartilage injuries and repair, new insight will be given non-invasively which can be used in clinical routine, scientific studies and during clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Potter HG, le Chong R, Sneag DB. Magnetic resonance imaging of cartilage repair. Sports Med Arthrosc. 2008;16(4):236–45.

    Article  PubMed  Google Scholar 

  2. Trattnig S, Millington SA, Szomolanyi P, Marlovits S. MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol. 2007;17(1):103–18.

    Article  PubMed  CAS  Google Scholar 

  3. Welsch GH, Mamisch TC, Hughes T, Domayer S, Marlovits S, Trattnig S. Advanced morphological and biochemical magnetic resonance imaging of cartilage repair procedures in the knee joint at 3 Tesla. Semin Musculoskelet Radiol. 2008;12(3):196–211.

    Article  PubMed  Google Scholar 

  4. Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am. 2003;85-A Suppl 2:58–69.

    PubMed  Google Scholar 

  5. Hunter DJ, Guermazi A, Lo GH, Grainger AJ, Conaghan PG, Boudreau RM, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage. 2011;19:990–1002.

    Article  PubMed  CAS  Google Scholar 

  6. Recht M, Bobic V, Burstein D, Disler D, Gold G, Gray M, et al. Magnetic resonance imaging of articular cartilage. Clin Orthop Relat Res. 2001;391(Suppl):S379–96.

    Article  PubMed  Google Scholar 

  7. Trattnig S, Marlovits S, Gebetsroither S, Szomolanyi P, Welsch GH, Salomonowitz E, et al. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0T: preliminary results. J Magn Reson Imaging. 2007;26(4):974–82.

    Article  PubMed  Google Scholar 

  8. Watanabe A, Boesch C, Anderson SE, Brehm W, Mainil Varlet P. Ability of dGEMRIC and T2 mapping to evaluate cartilage repair after microfracture: a goat study. Osteoarthritis Cartilage. 2009;17(10):1341–9.

    Article  PubMed  CAS  Google Scholar 

  9. Welsch GH, Mamisch TC, Domayer SE, Dorotka R, Kutscha-Lissberg F, Marlovits S, et al. Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures–initial experience. Radiology. 2008;247(1):154–61.

    Article  PubMed  Google Scholar 

  10. Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D, et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI: (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med. 2001;45(1):36–41.

    Article  PubMed  CAS  Google Scholar 

  11. Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol. 2004;8(4):355–68.

    Article  PubMed  Google Scholar 

  12. Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am. 2007;89(10):2105–12.

    Article  PubMed  Google Scholar 

  13. Welsch GH, Mamisch TC, Marlovits S, Glaser C, Friedrich K, Hennig FF, et al. Quantitative T2 mapping during follow-up after matrix-associated autologous chondrocyte transplantation (MACT): full-thickness and zonal evaluation to visualize the maturation of cartilage repair tissue. J Orthop Res. 2009;27(7):957–63.

    Article  PubMed  Google Scholar 

  14. Potter HG, Black BR, le Chong R. New techniques in articular cartilage imaging. Clin Sports Med. 2009;28(1):77–94.

    Article  PubMed  Google Scholar 

  15. Welsch GH, Trattnig S, Domayer S, Marlovits S, White LM, Mamisch TC. Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess differences between cartilage repair tissue after microfracture therapy and matrix-associated autologous chondrocyte transplantation: a pilot study. Osteoarthritis Cartilage. 2009;17:1219–27.

    Article  PubMed  CAS  Google Scholar 

  16. Welsch GH, Zak L, Mamisch TC, Resinger C, Marlovits S, Trattnig S. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla. Invest Radiol. 2009;44(9):603–12.

    Article  PubMed  Google Scholar 

  17. Bolog N, Nanz D, Weishaupt D. Muskuloskeletal MR imaging at 3.0 T: current status and future perspectives. Eur Radiol. 2006;16(6):1298–307.

    Article  PubMed  Google Scholar 

  18. Kornaat PR, Reeder SB, Koo S, Brittain JH, Yu H, Andriacchi TP, et al. MR imaging of articular cartilage at 1.5T and 3.0T: comparison of SPGR and SSFP sequences. Osteoarthritis Cartilage. 2005;13(4):338–44.

    Article  PubMed  CAS  Google Scholar 

  19. Schoth F, Kraemer N, Niendorf T, Hohl C, Gunther RW, Krombach GA. Comparison of image quality in magnetic resonance imaging of the knee at 1.5 and 3.0 Tesla using 32-channel receiver coils. Eur Radiol. 2008;18:2258–64.

    Article  PubMed  CAS  Google Scholar 

  20. Zuo J, Li X, Banerjee S, Han E, Majumdar S. Parallel imaging of knee cartilage at 3 Tesla. J Magn Reson Imaging. 2007;26(4):1001–9.

    Article  PubMed  Google Scholar 

  21. Azer NM, Winalski CS, Minas T. MR imaging for surgical planning and postoperative assessment in early osteoarthritis. Radiol Clin North Am. 2004;42(1):43–60.

    Article  PubMed  Google Scholar 

  22. Gomoll AH, Yoshioka H, Watanabe A, Dunn JC, Minas T. Preoperative measurement of cartilage defects by MRI underestimates lesion size. Cartilage. 2011;2:389–93.

    Google Scholar 

  23. Welsch GH, Zak L, Mamisch TC, Paul D, Lauer L, Mauerer A, et al. Advanced morphological 3D magnetic resonance observation of cartilage repair tissue (MOCART) scoring using a new isotropic 3D proton-density, turbo spin echo sequence with variable flip angle distribution (PD-SPACE) compared to an isotropic 3D steady-state free precession sequence (True-FISP) and standard 2D sequences. J Magn Reson Imaging. 2010;33(1):180–8.

    Article  Google Scholar 

  24. Kim YJ, Jaramillo D, Millis MB, Gray ML, Burstein D. Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am. 2003;85A(10):1987–92.

    Google Scholar 

  25. Apprich S, Mamisch TC, Welsch GH, Stelzeneder D, Albers C, Totzke U, et al. Quantitative T2 mapping of the patella at 3.0T is sensitive to early cartilage degeneration, but also to loading of the knee. Eur J Radiol. 2012;81:e438–43.

    Article  PubMed  CAS  Google Scholar 

  26. Apprich S, Welsch GH, Mamisch TC, Szomolanyi P, Mayerhoefer M, Pinker K, et al. Detection of degenerative cartilage disease: comparison of high-resolution morphological MR and quantitative T2 mapping at 3.0 Tesla. Osteoarthritis Cartilage. 2011;18(9):1211–7.

    Article  Google Scholar 

  27. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol. 2006;57(1):16–23.

    Article  PubMed  Google Scholar 

  28. Marlovits S, Striessnig G, Resinger CT, Aldrian SM, Vecsei V, Imhof H, et al. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol. 2004;52(3):310–9.

    Article  PubMed  Google Scholar 

  29. Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology. 1996;198(1):209–12.

    PubMed  CAS  Google Scholar 

  30. Eckstein F, Kunz M, Schutzer M, Hudelmaier M, Jackson RD, Yu J, et al. Two year longitudinal change and test-retest-precision of knee cartilage morphology in a pilot study for the osteoarthritis initiative. Osteoarthritis Cartilage. 2007;15(11):1326–32.

    Article  PubMed  CAS  Google Scholar 

  31. Weckbach S, Mendlik T, Horger W, Wagner S, Reiser MF, Glaser C. Quantitative assessment of patellar cartilage volume and thickness at 3.0 Tesla comparing a 3D-fast low angle shot versus a 3D-true fast imaging with steady-state precession sequence for reproducibility. Invest Radiol. 2006;41(2):189–97.

    Article  PubMed  Google Scholar 

  32. Duc SR, Pfirrmann CW, Schmid MR, Zanetti M, Koch PP, Kalberer F, et al. Articular cartilage defects detected with 3D water-excitation true FISP: prospective comparison with sequences commonly used for knee imaging. Radiology. 2007;245(1):216–23.

    Article  PubMed  Google Scholar 

  33. Duc SR, Pfirrmann CW, Koch PP, Zanetti M, Hodler J. Internal knee derangement assessed with 3-minute three-dimensional isovoxel true FISP MR sequence: preliminary study. Radiology. 2008;246(2):526–35.

    Article  PubMed  Google Scholar 

  34. Gold GE, Busse RF, Beehler C, Han E, Brau AC, Beatty PJ, et al. Isotropic MRI of the knee with 3D fast spin-echo extended echo-train acquisition (XETA): initial experience. AJR Am J Roentgenol. 2007;188(5):1287–93.

    Article  PubMed  Google Scholar 

  35. Bashir A, Gray ML, Boutin RD, Burstein D. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology. 1997;205(2):551–8.

    PubMed  CAS  Google Scholar 

  36. Watanabe A, Wada Y, Obata T, Ueda T, Tamura M, Ikehira H, et al. Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results. Radiology. 2006;239(1):201–8.

    Article  PubMed  Google Scholar 

  37. Trattnig S, Mamisch TC, Pinker K, Domayer S, Szomolanyi P, Marlovits S, et al. Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla. Eur Radiol. 2008;18:1251–9.

    Article  PubMed  Google Scholar 

  38. Trattnig S, Burstein D, Pinker K, Szomolanyi P, Welsch GH, Mamisch TC. T1(Gd) gives comparable information as delta T1 relaxation rate in dGEMRIC evaluation of cartilage repair tissue. Invest Radiol. 2009;44:598–602.

    Article  PubMed  Google Scholar 

  39. Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A. 2008;105(7):2266–70.

    Article  PubMed  CAS  Google Scholar 

  40. Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging. 2006;23(4):547–53.

    Article  PubMed  Google Scholar 

  41. Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed. 2006;19(7):781–821.

    Article  PubMed  CAS  Google Scholar 

  42. Mlynarik V, Szomolanyi P, Toffanin R, Vittur F, Trattnig S. Transverse relaxation mechanisms in articular cartilage. J Magn Reson. 2004;169(2):300–7.

    Article  PubMed  CAS  Google Scholar 

  43. Murphy BJ. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging. Skeletal Radiol. 2001;30(6):305–11.

    Article  PubMed  CAS  Google Scholar 

  44. Hughes T, Welsch GH, Trattnig S, Brandi L, Domayer S, Mamisch TC. T2-star relaxation as a means to differentiate cartilage repair tissue after microfracturing therapy. Intern Soc Magn Reson Med. 2007;15:183.

    Google Scholar 

  45. Wietek B, Martirosian P, Machann J, Mueller-Horvath C, Claussen CD, Schick F. T2 and T2* mapping of the human femoral-tibial cartilage at 1.5 and 3 Tesla. Intern Soc Magn Reson Med. 2007;15:516.

    Google Scholar 

  46. Welsch GH, Trattnig S, Scheffler K, Szomonanyi P, Quirbach S, Marlovits S, et al. Magnetization transfer contrast and T2 mapping in the evaluation of cartilage repair tissue with 3T MRI. J Magn Reson Imaging. 2008;28(4):979–86.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goetz H. Welsch MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Welsch, G.H., Hennig, F.F., Trattnig, S. (2014). Advanced Magnetic Resonance Imaging of Cartilage Repair. In: Emans, P., Peterson, L. (eds) Developing Insights in Cartilage Repair. Springer, London. https://doi.org/10.1007/978-1-4471-5385-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5385-6_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5384-9

  • Online ISBN: 978-1-4471-5385-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics