Skip to main content

Life-Cycle Assessment of Biomethane from Lignocellulosic Biomass

  • Chapter
  • First Online:
Life Cycle Assessment of Renewable Energy Sources

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter evaluates the life-cycle assessment (LCA) studies of biomethane produced from lignocellulosic biomass as a biofuel and it is released into the environment in comparison with other bioenergy systems. A case study of grass biomethane that is produced by anaerobic digestion (AD) of grass silage and used as a transport fuel is described. The production of biomethane from AD is a well-known technological procedure that fulfills the requirements imposed by the environment, agronomy, and legislation in developing rural economies and sustainable biofuel production. All across Europe, the biomethane yield from various lignocellulosic biomass ranges from 10 to 1,150 m3 h−1. The LCA studies have been gaining importance over the past few years to analyze biofuel sources from cradle to grave in determining optimal biofuel strategies. Included in these, LCA studies is the indirect input of biofuel production processes, related emissions and waste as well as the fate of downstream products. Eighty-nine percent of greenhouse gas (GHG) emission savings are achieved by AD of grass silage to produce biomethane as a transport fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bauen A (2005) Biomass in Europe. In: Silveira S (ed) Bioenergy-realizing the potential. Elsevier, Amsterdam, pp 19–30

    Chapter  Google Scholar 

  • Berglund M, Börjesson P (2006) Assessment of energy performance in the life cycle of biogas production. Biomass Bioenergy 30:254–266. doi:10.1016/j.biombioe.2005.11.011

    Article  Google Scholar 

  • IEA Bioenergy (2009) Sustainable bioenergy—a reliable energy option. Report prepared for IEA Bioenergy Implementing Agreement. www.ieabioenergy.org

  • Börjesson P (2009) Good or bad bioethanol from a greenhouse gas perspective-what determines this? Appl Energy 86:589–594. doi:10.1016/j.apenergy.2008.11.025

    Article  Google Scholar 

  • Browne JD, Murphy JD (2012) Assessment of the resource associated with biomethane from food waste. Appl Energy Accepted

    Google Scholar 

  • Casey JW, Holden NM (2005) Analysis of greenhouse gas emissions from the average Irish milk production system. Agric Syst 86:97–114

    Article  Google Scholar 

  • Chahal DS, Mcguirc S, Pikor H, et al (1981) In: Proceedings of the 2nd world congress of chemical engineering. Montreal, Canada, October, 4–9

    Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renew Sustain Energy Rev 16:1462–1476

    Article  Google Scholar 

  • Cherubini F, Bird ND, Cowie A et al (2009) Energy-and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recycl 53:434–447. doi:10.1016/j.resconrec.2009.03.013

    Article  Google Scholar 

  • Cho JK, Park SC (1995) Biochemical methane potential and solid state anaerobic digestion of Korean food wastes’. Bioresour Technol 52(3):245–253

    Article  Google Scholar 

  • Clark JH, Budarin V, Deswarte FEI et al (2006) Green chemistry and the biorefinery: a partnership for a sustainable future. Green Chem 8:853–860

    Article  Google Scholar 

  • Colchester M, Jiwan N, Andiko et al (2006) Promised land: palm oil and land acquisition in Indonesia: implications for local communities and Indigenous Peoples. Forest Peoples Programme/Perkumpulan Sawit Watch, London/Bogor

    Google Scholar 

  • Consoli F, Allen D, Boustead I, et al (1993) Guidelines for life-cycle assessment: a “Code of practice”. In: Proceedings of society of environmental toxicology and chemistry (SETAC). SETAC Workshop, Sesimbra, 31 Mar–3 Apr

    Google Scholar 

  • Dena HM, Kontges A, Rostek S (2009) Biogaspartner—a joint initiative. Biogas grid injection in Germany and Europe-Market, Technology and Players. German Energy Agency, HP Druck, Berlin

    Google Scholar 

  • EC (2009) Directive 2009/28/EC of the European parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official J Eur Union, L140/16–62

    Google Scholar 

  • Eisentraut A (2010) Sustainable production of second generation biofuels, information paper. International Energy Agency, Paris

    Google Scholar 

  • Fan LT, Gharpuray MM, Lee Y-H (1987) Cellulose hydrolysis. Springer, Berlin

    Book  Google Scholar 

  • Fargione J, Hill J, Tilman D et al (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238. doi:10.1126/science.1152747

    Article  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT et al (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  Google Scholar 

  • Gerin PA, Vliegen F, Jossart JM (2008) Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresour Technol 99:2620–2627. doi:10.1016/j.biortech.2007.04.049

    Article  Google Scholar 

  • Goldemberg J, Teixeira CS, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energy Policy 36:2086–2097. doi:10.1016/j.enpol.2008.02.028

    Article  Google Scholar 

  • Grass S (2004) Utilisation of grass for production of fibres, protein and energy. Biomass and agriculture: sustainability, markets and policies. Biomass Project Services, Switzerland, pp 169–177

    Google Scholar 

  • ISO (2006) International Standardization Organization (ISO), Environmental management–life cycle assessment-principles and framework, ISO 14040

    Google Scholar 

  • Jagadabhi PS, Lehtomäki A, Rintala J (2008) Co-digestion of grass silage and cow manure in a CSTR by re-circulation of alkali treated solids of the digestate. Environ Technol 29:1085–1093. doi:10.1080/09593330802180385

    Article  Google Scholar 

  • János T, Elza K (2008) Input materials of biogas production. Lecture on Environmental technology. Debreceni Egyetem a TÁMOP 4.1.2 pályázat keretein belül. Available from: http://www.tankonyvtar.hu/en/tartalom/tamop425/0032_kornyezettechnologia_en/ch01s02.html

  • Jha AK, Li J, Nies L et al (2011) Research advances in dry anaerobic digestion process of solid organic wastes. Afr J Biotechnol 10:14242–14253

    Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challanges and opportunities. Biofuels. Bioprod Biorefin 1:119–134

    Article  Google Scholar 

  • Juanga JP (2005) Optimizing dry anaerobic digestion of organic fraction of municipal solid waste. M.E. thesis, Asian Institute of Technology, Bankok

    Google Scholar 

  • Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145

    Article  Google Scholar 

  • Kamm B, Kamm M, Soyez K (1998) The green biorefinery, concept of technology. In: Proceedings of (1st international symposium on green biorefinery) Neuruppin, Society of Ecological Technology and System Analysis, Berlin

    Google Scholar 

  • Kim KH, Hong J (1999) Equilibrium solubilities of spearmint oil components in supercritical carbon dioxide. Fluid Phase Equil 164:107–115

    Article  Google Scholar 

  • Kim KH, Hong J (2000) Dynamic extraction of spearmint oil components by using supercritical CO2. Sep Sci Technol 35:315–322

    Article  Google Scholar 

  • Kim KH, Hong J (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77:139–144

    Article  MATH  Google Scholar 

  • Korres NE, Singh A, Nizami AS et al (2010) Is grass biomethane a sustainable transport biofuel? Biofuels Bioprod Bioref 4:310–325. doi:10.1002/bbb.228

    Article  Google Scholar 

  • Korres NE, Thamsiriroj T, Smyth BM et al (2011) Grass biomethane for agriculture and energy. In: Sustainable Agriculture Reviews, vol 7. Springer, London Ltd, pp 5–49, DOI: 10.1007/978-94-007-1521-9_2

    Google Scholar 

  • Köttner M (2002) Biogas and fertilizer production from solid waste and biomass through dry fermentation in batch method. In: Wilderer, P, Moletta, R (eds) Anaerobic digestion of solid wastes III. IWA Publishing, London

    Google Scholar 

  • Li D, Yuan Z, Sun Y (2010) Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW). Bioresour Technol 101:2722–2728

    Article  Google Scholar 

  • Mähnert P, Heiermann M, Linke B (2005) Batch- and semi- continuous production from different grass species. Agric Eng Int: CIGRE E J V11, Manuscript EE 05 010

    Google Scholar 

  • Matsunaka T, Sawamoto T, Ishimura H et al (2006) Efficient use of digested cattle slurry from biogas plant with respect to nitrogen recycling in grassland. Int Congr Ser 1293:242–252

    Article  Google Scholar 

  • Murphy JD, Braun R, Weiland P et al (2011) Biogas from crop digestion. IEA Bioenergy Task 37. Web access: http://www.iea-biogas.net/

  • Narodoslawsky M (1999) Green biorefinery. In: Proceedings of 2nd international symposium on green biorefinery, SUSTAIN, Feldbach

    Google Scholar 

  • Nizami AS, Murphy JD (2010) What type of digester configurations should be employed to produce biomethane from grass silage? Renew Sustain Energy Rev 14:1558–1568

    Article  Google Scholar 

  • Nizami AS, Korres NE, Murphy JD (2009) A review of the integrated process for the production of grass biomethane. Environ Sci Technol 43:8496–8508

    Article  Google Scholar 

  • Payraudeau S, van der Werf HMG, Vertes F (2007) Analysis of the uncertainty associated with the estimation of nitrogen losses from farming systems. Agric Syst 94:416–430. doi:10.1016/j.agsy.2006.11.014

    Article  Google Scholar 

  • Peeters A (2009) Importance, evolution, environmental impact and future challenges of grasslands and grassland-based systems in Europe. Grassl Sci 55:113–125. doi:10.1111/j.1744-697X.2009.00154.x

    Article  Google Scholar 

  • Power MP, Murphy JD (2009) Which is the preferable transport fuel on a greenhouse gas basis; biomethane or ethanol? Biomass Bioenergy 33(10):1403–1412 doi: 10. 1016/j. biombioe. 2009. 06.044

    Google Scholar 

  • Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50:1–39

    Article  Google Scholar 

  • Ragaglini G, Triana F, Villani R et al (2010) Can sunflower provide biofuel for in-land demand? an integrated assessment of sustainability at regional scale. Energy. doi:10.1016/j.energy.2010.03.009

    Google Scholar 

  • Reinhard J, Zah R (2009) Global environmental consequences of increased biodiesel consumption in Switzerland: consequential life cycle assessment. J Cleaner Prod 17(Supplement 1):S46–S56. doi:10.1016/j.jclepro.2009.05.003Salter

    Article  Google Scholar 

  • Salter A, Banks CJ (2009) Establishing an energy balance for crop-based digestion. Water Sci Technol IWA 59(6):1053

    Google Scholar 

  • Sanz Requena JF, Guimaraes AC, Quiros Alpera S et al (2010) Life cycle assessment (LCA) of the biofuel production process from sunflower oil, rapeseed oil and soybean oil. Fuel Process Technol 92:190–199. doi:0.1016/j.fuproc.2010.03.004

    Article  Google Scholar 

  • Singh A, Pant D, Korres NE et al (2010a) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101:5003–5012. doi:10.1016/j.biortech.2009.11.062

    Article  Google Scholar 

  • Singh A, Korres NE, Murphy JD (2010b) Grass and anaerobic digestion for biomethane production: a sustainable option. In: Grassland Science in Europe, the official peer-reviewed. Proceedings of European Grassland Federation, General Meeting, Kiel, 29 Aug–2 Sept 2010

    Google Scholar 

  • Smith TC, Kindred DR, Brosnan JM et al (2005) Wheat as a feedstock for alcohol production. Research Review no. 61, Home-Grown Cereals Authority

    Google Scholar 

  • Smyth B, Murphy JD, O’Brien C (2009) What is the energy balance of grass biomethane in Ireland and other temperate northern European climates? Renew Sustain Energy Rev 13(9):2349–2360 doi:10.1016/j.rser.2009.04.003

    Google Scholar 

  • Thornley P, Upham P, Tomei J (2009) Sustainability constraints on UK bioenergy development. Energy Policy 37:5623–5635. doi:10.1016/j.enpol.2009.08.028

    Article  Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high diversity grassland biomass. Science 314:1598–1600. doi:10.1126/science.1133306

    Article  Google Scholar 

  • Weiland P (2003) Production and energetic use of biogas from energy crops and wastes in Germany. Appl Biochem Biotechnol 109(1–3):263–274

    Google Scholar 

  • Zheng Y, Lin HM, Wen J et al (1995) Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnol Lett 17:845–850

    Article  Google Scholar 

  • Zheng Y, Lin H-M, Tsao GT (1998) Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14:890–896

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Sattar Nizami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Nizami, AS., Ismail, I.M. (2013). Life-Cycle Assessment of Biomethane from Lignocellulosic Biomass. In: Singh, A., Pant, D., Olsen, S. (eds) Life Cycle Assessment of Renewable Energy Sources. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5364-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5364-1_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5363-4

  • Online ISBN: 978-1-4471-5364-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics