Brownian Motion

  • Achim Klenke
Part of the Universitext book series (UTX)

Abstract

Brownian motion is a central object of probability theory. Roughly speaking, we could perform a space-time rescaling of a symmetric nearest neighbor random walk on the integer lattice such that the limiting process has normally distributed increments and continuous paths.

We provide different principles of construction: Firstly, via the Kolmogorov–Chentsov theorem on continuous modifications and secondly via a Fourier series with random coefficients in the fashion of Paley–Wiener or of Lévy. Finally, we show the functional central limit theorem (invariance principle) which states that the properly rescaled partial sum process of centered square integrable i.i.d. random variables converges in path space to Brownian motion.

Keywords

Filtration Covariance Convolution 

References

  1. 1.
    Adler RJ (1990) An introduction to continuity, extrema, and related topics for general Gaussian processes. Institute of Mathematical Statistics lecture notes—monograph series, vol 12. Institute of Mathematical Statistics, Hayward MATHGoogle Scholar
  2. 18.
    Blumenthal RM (1957) An extended Markov property. Trans Am Math Soc 85:52–72 MathSciNetMATHCrossRefGoogle Scholar
  3. 35.
    Donsker MD (1951) An invariance principle for certain probability limit theorems. Memoirs of the American Mathematical Society, vol 6 Google Scholar
  4. 37.
    Dudley RM (2002) Real analysis and probability. Cambridge studies in advanced mathematics, vol 74. Cambridge University Press, Cambridge. Revised reprint of the 1989 original MATHCrossRefGoogle Scholar
  5. 40.
    Dvoretzky A, Erdős P, Kakutani S (1961) Nonincrease everywhere of the Brownian motion process. In: Proceedings of the 4th Berkeley symposium on mathematics, statistics and probability, vol II. University of California Press, Berkeley, pp 103–116 Google Scholar
  6. 86.
    Karatzas I, Shreve SE (1998) Methods of mathematical finance. Applications of mathematics, vol 39. Springer, New York MATHGoogle Scholar
  7. 101.
    Kolmogorov AN (1933) Sulla determinazione empirica di una legge di distibuzione. G Ist Ital Attuari 4:83–91 MATHGoogle Scholar
  8. 107.
    Lévy P (1948) Processus stochastiques et mouvement Brownien. Suivi d’une note de M. Loève. Gauthier-Villars, Paris MATHGoogle Scholar
  9. 109.
    Lindvall T (1972) Convergence of critical Galton–Watson branching processes. J Appl Probab 9:445–450 MathSciNetMATHCrossRefGoogle Scholar
  10. 118.
    Mörters P, Peres Y (2010) Brownian motion. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge. With an appendix by Oded Schramm and Wendelin Werner MATHCrossRefGoogle Scholar
  11. 125.
    Paley REAC, Wiener N (1987) Fourier transforms in the complex domain. American Mathematical Society colloquium publications, vol 19. American Mathematical Society, Providence. Reprint of the 1934 original Google Scholar
  12. 126.
    Paley REAC, Wiener N, Zygmund A (1933) Note on random functions. Math Z 37:647–668 MathSciNetCrossRefGoogle Scholar
  13. 133.
    Pitman J, Yor M (2001) On the distribution of ranked heights of excursions of a Brownian bridge. Ann Probab 29(1):361–384 MathSciNetMATHCrossRefGoogle Scholar
  14. 140.
    Protter PE (2004) Stochastic integration and differential equations, 2nd edn. Applications of mathematics (New York), vol 21. Springer, Berlin. Stochastic modelling and applied probability MATHGoogle Scholar
  15. 144.
    Revuz D, Yor M (1999) Continuous martingales and Brownian motion, 3rd edn. Grundlehren der Mathematischen Wissenschaften, vol 293. Springer, Berlin MATHCrossRefGoogle Scholar
  16. 146.
    Rogers LCG, Williams D (2000) Diffusions, Markov processes, and martingales, vol 1: Foundations. Cambridge mathematical library. Cambridge University Press, Cambridge. Reprint of the 2nd edition from 1994 MATHGoogle Scholar
  17. 151.
    Schilling RL, Partzsch L (2012) Brownian motion. De Gruyter, Berlin. An introduction to stochastic processes, with a chapter on simulation by Björn Böttcher MATHGoogle Scholar
  18. 156.
    Smirnov NV (1939) Sur les écarts de la Courbe de distribution empirique. Mat Sb 2:3–16. Russian with French summary Google Scholar
  19. 173.
    Yosida K (1995) Functional analysis. Classics in mathematics. Springer, Berlin. Reprint of the sixth edition from 1980 Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Achim Klenke
    • 1
  1. 1.Institut für MathematikJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations