Skip to main content

Markov Chains

  • Chapter
Probability Theory

Part of the book series: Universitext ((UTX))

  • 162k Accesses

Abstract

In spite of their simplicity, Markov processes with countable state space (and discrete time) are interesting mathematical objects with which a variety of real-world phenomena can be modeled. We give an introduction to the basic concepts (Markov property, transition matrix, recurrence, transience, invariant distribution) and then study certain examples in more detail. For example, we show how to compute numerically very precisely, the expected number of returns to the origin of simple random walk on multidimensional integer lattices.

The connection with discrete potential theory will be investigated later, in Chapter 19. Some readers might prefer to skip the somewhat technical construction of general Markov processes in Section 17.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breiman L (1968) Probability. Addison-Wesley, Reading

    MATH  Google Scholar 

  2. Brémaud P (1999) Markov chains. Texts in applied mathematics, vol 31. Springer, New York. Gibbs fields, Monte Carlo simulation, and queues

    MATH  Google Scholar 

  3. Chung KL, Fuchs WHJ (1951) On the distribution of values of sums of random variables. Memoirs of the American Mathematical Society, vol 6

    Google Scholar 

  4. Chung KL (1960) Markov chains with stationary transition probabilities. Die Grundlehren der mathematischen Wissenschaften, vol 104. Springer, Berlin

    Book  MATH  Google Scholar 

  5. Dudley RM (2002) Real analysis and probability. Cambridge studies in advanced mathematics, vol 74. Cambridge University Press, Cambridge. Revised reprint of the 1989 original

    Book  MATH  Google Scholar 

  6. Durrett R (2010) Probability: theory and examples, 4th edn. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Feller W (1968) An introduction to probability theory and its applications, vol I, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  8. Georgii H-O (2012) Stochastics: introduction to probability theory and statistics. de Gruyter Lehrbuch, 2nd edn. Walter de Gruyter, Berlin

    Book  Google Scholar 

  9. Gibbs AL, Su FE (2002) On choosing and bounding probability metrics. Int Stat Rev 70(3):419–435

    Article  MATH  Google Scholar 

  10. Glasser ML, Zucker IJ (1977) Extended Watson integrals for the cubic lattices. Proc Natl Acad Sci USA 74(5):1800–1801

    Article  MathSciNet  MATH  Google Scholar 

  11. Grimmett GR, Stirzaker DR (2001) Probability and random processes, 3rd edn. Oxford University Press, New York

    Google Scholar 

  12. Häggström O (2002) Finite Markov chains and algorithmic applications. London Mathematical Society student texts, vol 52. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  13. Joyce GS (2003) Singular behaviour of the lattice Green function for the d-dimensional hypercubic lattice. J Phys A 36(4):911–921

    Article  MathSciNet  MATH  Google Scholar 

  14. Kallenberg O (2002) Foundations of modern probability, 2nd edn. Probability and its applications. Springer, New York

    MATH  Google Scholar 

  15. Kantorovič LV, Rubinšteĭn GŠ (1958) On a space of completely additive functions. Vestn Leningr Univ 13(7):52–59

    Google Scholar 

  16. Kemeny JG, Snell JL (1976) Finite Markov chains. Undergraduate texts in mathematics. Springer, New York. Reprinting of the 1960 original

    MATH  Google Scholar 

  17. Klenke A, Mattner L (2010) Stochastic ordering of classical discrete distributions. Adv Appl Probab 42(2):392–410

    Article  MathSciNet  MATH  Google Scholar 

  18. Meyn SP, Tweedie RL (1993) Markov chains and stochastic stability. Communications and control engineering series. Springer, London

    Book  MATH  Google Scholar 

  19. Müller A, Stoyan D (2002) Comparison methods for stochastic models and risks. Wiley series in probability and statistics. Wiley, Chichester

    MATH  Google Scholar 

  20. Norris JR (1998) Markov chains. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge. Reprint of the 1997 edition

    MATH  Google Scholar 

  21. Nummelin E (1984) General irreducible Markov chains and nonnegative operators. Cambridge tracts in mathematics, vol 83. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Pólya G (1921) Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz. Math Ann 84:149–160

    Article  MathSciNet  MATH  Google Scholar 

  23. Revuz D (1984) Markov chains, 2nd edn. North-Holland mathematical library, vol 11. North-Holland, Amsterdam

    MATH  Google Scholar 

  24. Seneta E (2006) Non-negative matrices and Markov chains. Springer series in statistics. Springer, New York. Revised reprint of the second (1981) edition

    MATH  Google Scholar 

  25. Spitzer F (1976) Principles of random walks, 2nd edn. Graduate texts in mathematics, vol 34. Springer, New York

    Book  Google Scholar 

  26. Strassen V (1965) The existence of probability measures with given marginals. Ann Math Stat 36:423–439

    Article  MathSciNet  MATH  Google Scholar 

  27. Watson GN (1939) Three triple integrals. Q J Math, Oxf Ser 10:266–276

    Article  Google Scholar 

  28. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Klenke, A. (2014). Markov Chains. In: Probability Theory. Universitext. Springer, London. https://doi.org/10.1007/978-1-4471-5361-0_17

Download citation

Publish with us

Policies and ethics