Skip to main content

The Mind-Controlled Robotic Hand

  • Chapter
  • First Online:
The Hand and the Brain

Abstract

A mind-controlled artificial hand is a good solution for improving quality of life for many amputees. However, considering the extremely well-developed motor and sensory functions of the human hand, developing a useful alternative is an enormously challenging task. The ideal hand prosthesis should be capable of intuitively executing the delicate movements and precision grips that we use daily at work and at leisure. It should possess sensory functions to ensure a feeling of embodiment, and it should provide sensory feedback for regulation of grip strength. It should also provide tactile discriminative functions. However, despite advanced technological achievements in the prosthetic field, only some of these aspirations have been fulfilled. The prosthetic hands that are available on the market today are controlled by EMG signals from the forearm muscles, and their function is limited to little more than opening and closing the hand. Various principles for providing them with sensory functions are currently being tried in many centres, and refined motor functions are being achieved by using computerised systems for pattern recognition, associating specific patterns of myoelectric signals with specific movements of the hand. In experimental studies and clinical trials on completely paralysed patients, recordings from needle electrodes, implanted into motor areas of the brain, have been successfully used to control movements in artificial arms and hands. In the future the function of mind-controlled robotic hands will presumably come much closer to the function of a human hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sorbye R. Myoelectric prosthetic fitting in young children. Clin Orthop Relat Res. 1980;148:34–40.

    Google Scholar 

  2. Billock JN. Prosthetic management of complete hand and arm deficiencies. In: Hunter JM, Mackin EJ, Callahan AD, editors. Rehabilitation of the hand: surgery and therapy. 4th ed. St. Louis: Mosby; 1995. p. 1189–201.

    Google Scholar 

  3. Hubbard S. Myoprosthetic management of the upper limb amputee. In: Hunter JM, Mackin EJ, Callahan AD, editors. Rehabilitation of the hand: surgery and therapy. 4th ed. St. Louis: Mosby; 1995. p. 1241–52.

    Google Scholar 

  4. Atkins DJ, Heard DCY, Donovan WH. Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. J Prosthet Orthot. 1996;8:2–11.

    Article  Google Scholar 

  5. Kyberd PJ, Chappell PH. The Southampton Hand: an intelligent myoelectric prosthesis. J Rehabil Res Dev. 1994;31(4):326–34.

    Google Scholar 

  6. Lundborg G. Tomorrow’s artificial hand. Scand J Plast Reconstr Surg Hand Surg. 2000;34(2):97–100.

    Article  Google Scholar 

  7. Mercier C, Reilly KT, Vargas CD, Aballea A, Sirigu A. Mapping phantom movement representations in the motor cortex of amputees. Brain. 2006;129(Pt 8):2202–10.

    Article  Google Scholar 

  8. Nicolelis MA, Lebedev MA. Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat Rev Neurosci. 2009;10(7):530–40.

    Article  Google Scholar 

  9. Kennedy PR, Bakay RA. Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport. 1998;9(8):1707–11.

    Article  Google Scholar 

  10. Kennedy PR, Bakay RA, Moore MM, Adams K, Goldwaithe J. Direct control of a computer from the human central nervous system. IEEE Trans Rehabil Eng. 2000;8(2):198–202.

    Article  Google Scholar 

  11. Birbaumer N, Cohen LG. Brain-computer interfaces: communication and restoration of movement in paralysis. J Physiol. 2007;579(Pt 3):621–36.

    Article  Google Scholar 

  12. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kubler A, et al. A spelling device for the paralysed. Nature. 1999;398(6725):297–8.

    Article  Google Scholar 

  13. Karim AA, Hinterberger T, Richter J, Mellinger J, Neumann N, Flor H, et al. Neural internet: web surfing with brain potentials for the completely paralyzed. Neurorehabil Neural Repair. 2006;20(4):508–15.

    Article  Google Scholar 

  14. Kennedy PR, Kirby MT, Moore MM, King B, Mallory A. Computer control using human intracortical local field potentials. IEEE Trans Neural Syst Rehabil Eng. 2004;12(3):339–44.

    Article  Google Scholar 

  15. Nijboer F, Sellers EW, Mellinger J, Jordan MA, Matuz T, Furdea A, et al. A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol. 2008;119(8):1909–16.

    Article  Google Scholar 

  16. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002;113(6):767–91.

    Article  Google Scholar 

  17. Wolpaw JR, McFarland DJ. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci U S A. 2004;101(51):17849–54.

    Article  Google Scholar 

  18. Fischman J. A bionic boost. Nat Geosci. 2010;217:34–53.

    Google Scholar 

  19. Schwartz AB, Cui XT, Weber DJ, Moran DW. Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron. 2006;52(1):205–20.

    Article  Google Scholar 

  20. Nicolelis MA. Actions from thoughts. Nature. 2001;409(6818):403–7.

    Article  Google Scholar 

  21. Nicolelis MA. Brain-machine interfaces to restore motor function and probe neural circuits. Nat Rev Neurosci. 2003;4(5):417–22.

    Article  Google Scholar 

  22. Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature. 2000;408(6810):361–5.

    Article  Google Scholar 

  23. Chapin JK, Moxon KA, Markowitz RS, Nicolelis MA. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci. 1999;2(7):664–70.

    Article  Google Scholar 

  24. Nicolelis MA, Chapin JK. Controlling robots with the mind. Sci Am. 2002;287(4):46–53.

    Article  Google Scholar 

  25. Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, Dimitrov DF, et al. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 2003;1(2):E42.

    Article  Google Scholar 

  26. Musallam S, Corneil BD, Greger B, Scherberger H, Andersen RA. Cognitive control signals for neural prosthetics. Science. 2004;305(5681):258–62.

    Article  Google Scholar 

  27. Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB. Cortical control of a prosthetic arm for self-feeding. Nature. 2008;453(7198):1098–101.

    Article  Google Scholar 

  28. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006;442(7099):164–71.

    Article  Google Scholar 

  29. Simeral JD, Kim SP, Black MJ, Donoghue JP, Hochberg LR. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J Neural Eng. 2011;8(2):025027.

    Article  Google Scholar 

  30. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381(9866):557–64.

    Article  Google Scholar 

  31. Eriksson Linsmeier C, Prinz CN, Pettersson LM, Caroff P, Samuelson L, Schouenborg J, et al. Nanowire biocompatibility in the brain–looking for a needle in a 3D stack. Nano Lett. 2009;9(12):4184–90.

    Article  Google Scholar 

  32. Thelin J, Jorntell H, Psouni E, Garwicz M, Schouenborg J, Danielsen N, et al. Implant size and fixation mode strongly influence tissue reactions in the CNS. PLoS One. 2011;6(1):e16267.

    Article  Google Scholar 

  33. Linsmeier CE, Thelin J, Danielsen N. Can histology solve the riddle of the nonfunctioning electrode? Factors influencing the biocompatibility of brain machine interfaces. Prog Brain Res. 2011;194:181–9.

    Article  Google Scholar 

  34. Lind G, Gallentoft L, Danielsen N, Schouenborg J, Pettersson LM. Multiple implants do not aggravate the tissue reaction in rat brain. PLoS One. 2012;7(10):e47509.

    Article  Google Scholar 

  35. Stix G. Jacking into the brain. Sci Am. 2008;299(5):56–61.

    Article  Google Scholar 

  36. Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng. 2005;13(4):468–72.

    Article  Google Scholar 

  37. Dhillon GS, Lawrence SM, Hutchinson DT, Horch KW. Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J Hand Surg Am. 2004;29(4):605–15; discussion 16–8.

    Article  Google Scholar 

  38. Rossini PM, Micera S, Benvenuto A, Carpaneto J, Cavallo G, Citi L, et al. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol. 2010;121(5):777–83.

    Article  Google Scholar 

  39. Warwick K, Gasson M, Hutt B, Goodhew I, Kyberd P, Andrews B, et al. The application of implant technology for cybernetic systems. Arch Neurol. 2003;60(10):1369–73.

    Article  Google Scholar 

  40. Almstrom C, Herberts P, Korner L. Experience with Swedish multifunctional prosthetic hands controlled by pattern recognition of multiple myoelectric signals. Int Orthop. 1981;5(1):15–21.

    Article  Google Scholar 

  41. Postema K, van der Donk V, van Limbeek J, Rijken RA, Poelma MJ. Prosthesis rejection in children with a unilateral congenital arm defect. Clin Rehabil. 1999;13(3):243–9.

    Article  Google Scholar 

  42. Wagner LV, Bagley AM, James MA. Reasons for prosthetic rejection by children with unilateral congenital transverse forearm total deficiency. JPO. 2007;19:51–4.

    Google Scholar 

  43. Lewis S, Russold MF, Dietl H, editors. User demands for sensory feedback in upper extremity prostheses. Medical Measurements and Applications Proceedings (MeMeA), 2012 IEEE international symposium. Budapest: Otto Bock Healthcare Products; 2012.

    Google Scholar 

  44. Pylatiuk C, Mounier S, Kargov A, Schulz S, Bretthauer G. Progress in the development of a multifunctional hand prosthesis. Conf Proc IEEE Eng Med Biol Soc. 2004;6:4260–3.

    Google Scholar 

  45. Sebelius FC, Rosen BN, Lundborg GN. Refined myoelectric control in below-elbow amputees using artificial neural networks and a data glove. J Hand Surg Am. 2005;30(4):780–9.

    Article  Google Scholar 

  46. Parker P, Englehart K, Hudgins B. Myoelectric signal processing for control of powered limb prostheses. J Electromyogr Kinesiol. 2006;16(6):541–8.

    Article  Google Scholar 

  47. Chan FH, Yang YS, Lam FK, Zhang YT, Parker PA. Fuzzy EMG classification for prosthesis control. IEEE Trans Rehabil Eng. 2000;8(3):305–11.

    Article  Google Scholar 

  48. Hudgins B, Parker P, Scott RN. A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng. 1993;40(1):82–94.

    Article  Google Scholar 

  49. Peleg D, Braiman E, Yom-Tov E, Inbar GF. Classification of finger activation for use in a robotic prosthesis arm. IEEE Trans Neural Syst Rehabil Eng. 2002;10(4):290–3.

    Article  Google Scholar 

  50. Boostani R, Moradi MH. Evaluation of the forearm EMG signal features for the control of a prosthetic hand. Physiol Meas. 2003;24(2):309–19.

    Article  Google Scholar 

  51. Castellini C, Gruppioni E, Davalli A, Sandini G. Fine detection of grasp force and posture by amputees via surface electromyography. J Physiol Paris. 2009;103(3–5):255–62.

    Article  Google Scholar 

  52. Tenore FV, Ramos A, Fahmy A, Acharya S, Etienne-Cummings R, Thakor NV. Decoding of individuated finger movements using surface electromyography. IEEE Trans Biomed Eng. 2009;56(5):1427–34.

    Article  Google Scholar 

  53. Momen K, Krishnan S, Chau T. Real-time classification of forearm electromyographic signals corresponding to user-selected intentional movements for multifunction prosthesis control. IEEE Trans Neural Syst Rehabil Eng. 2007;15(4):535–42.

    Article  Google Scholar 

  54. Zecca M, Micera S, Carrozza MC, Dario P. Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit Rev Biomed Eng. 2002;30(4–6):459–85.

    Article  Google Scholar 

  55. Cipriani C, Zaccone F, Micera S, Carrozza MC. On the shared control of an EMG-controlled prosthetic hand: analysis of user-prosthesis interaction. IEEE Trans Robot. 2008;24:170–84.

    Article  Google Scholar 

  56. Pons JL, Recon E, Ceres R, Reynaerts D, Saro B, Levin S, et al. The MANUS-HAND dextrous robotics upper limb prosthesis: mechanical and manipulation aspects. Auton Robot. 2004;16:143–63.

    Article  Google Scholar 

  57. Nishikawa D, Yu W, Yokoi H, Kakazu Y. On-line learning method for EMG prosthetic hand control. Electron Commun Jap. 2001;84:35–46.

    Article  Google Scholar 

  58. Carozza MC, Cappiello G, Micera S, Edin BB, Beccai L, Cipriani C. Design of cybernetic hand for perception and action. Biol Cybern. 2006;95:629–44.

    Article  Google Scholar 

  59. Sebelius F, Axelsson M, Danielson N, Schouenborg J, Laurell T. Real-time control of a virtual hand. Technol Disabil. 2005;17:131–41.

    Google Scholar 

  60. Carozza MC, Suppo C, Sebastiani F, Massa B, Vecchi F, Lazzarini R, et al. The SPRING Hand: development of a self-adaptive prosthesis for restoring natural grasping. Auton Robot. 2004;16:125–41.

    Article  Google Scholar 

  61. Oskoei MA, Hu H. Myoelectric control systems – a survey. Biomed Signal Process Control. 2007;2:275–94.

    Article  Google Scholar 

  62. Sebelius F, Eriksson L, Holmberg H, Levinsson A, Lundborg G, Danielsen N, et al. Classification of motor commands using a modified self-organising feature map. Med Eng Phys. 2005;27(5):403–13.

    Article  Google Scholar 

  63. Sebelius F, Eriksson L, Balkenius C, Laurell T. Myoelectric control of a computer animated hand: a new concept based on the combined use of a tree-structured artificial neural network and a data glove. J Med Eng Technol. 2006;30(1):2–10.

    Article  Google Scholar 

  64. Kanitz GR, Antfolk C, Cipriani C, Sebelius F, Carrozza MC. Decoding of individuated finger movements using surface EMG and input optimization applying a genetic algorithm. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:1608–11.

    Google Scholar 

  65. Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int. 2004;28(3):245–53.

    Google Scholar 

  66. Li G, Kuiken TA. EMG pattern recognition control of multifunctional prostheses by transradial amputees. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:6914–7.

    Google Scholar 

  67. Marasco PD, Schultz AE, Kuiken TA. Sensory capacity of reinnervated skin after redirection of amputated upper limb nerves to the chest. Brain. 2009;132(Pt 6):1441–8.

    Article  Google Scholar 

  68. Tkach D, Huang H, Kuiken TA. Study of stability of time-domain features for electromyographic pattern recognition. J Neuroeng Rehabil. 2010;7:21.

    Article  Google Scholar 

  69. Li G, Schultz AE, Kuiken TA. Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses. IEEE Trans Neural Syst Rehabil Eng. 2010;18(2):185–92.

    Article  Google Scholar 

  70. Kuiken TA. Consideration of nerve-muscle grafts to improve the control of artificial arms. J Technol Disabil. 2003;15:105–11.

    Google Scholar 

  71. Schultz AE, Kuiken TA. Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities. PM R. 2011;3(1):55–67.

    Article  Google Scholar 

  72. Marasco PD, Kim K, Colgate JE, Peshkin MA, Kuiken TA. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain. 2011;134(Pt 3):747–58.

    Article  Google Scholar 

  73. Biddiss E, Beaton D, Chau T. Consumer design priorities for upper limb prosthetics. Disabil Rehabil Assist Technol. 2007;2(6):346–57.

    Article  Google Scholar 

  74. Kyberd PJ, Wartenberg C, Sandsjö L. Survey of upper-extremity prosthesis users in Sweden and the United Kingdom. J Prosthet Orthot. 2007;19:55–62.

    Article  Google Scholar 

  75. Ehrsson HH, Rosen B, Stockselius A, Ragno C, Kohler P, Lundborg G. Upper limb amputees can be induced to experience a rubber hand as their own. Brain. 2008;131(Pt 12):3443–52.

    Article  Google Scholar 

  76. Rosen B, Ehrsson HH, Antfolk C, Cipriani C, Sebelius F, Lundborg G. Referral of sensation to an advanced humanoid robotic hand prosthesis. Scand J Plast Reconstr Surg Hand Surg. 2009;43(5):260–6.

    Article  Google Scholar 

  77. Childress DS. Closed-loop control in prosthetic systems: historical perspective. Ann Biomed Eng. 1980;8(4–6):293–303.

    Article  Google Scholar 

  78. Shannon GF. A comparison of alternative means of providing sensory feedback on upper limb prostheses. Med Biol Eng. 1976;14(3):289–94.

    Article  Google Scholar 

  79. Nohama P, Lopes AV, Cliquet JA. Electrotactile stimulator for artificial proprioception. Artif Organs. 1995;19(3):225–30.

    Article  Google Scholar 

  80. Phillips CA. Sensory feedback control of upper- and lower-extremity motor prostheses. Crit Rev Biomed Eng. 1988;16(2):105–40.

    Google Scholar 

  81. Patterson PE, Katz JA. Design and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand. J Rehabil Res Dev. 1992;29(1):1–8.

    Article  Google Scholar 

  82. Lundborg G, Rosen B. Sensory substitution in prosthetics. Hand Clin. 2001;17(3):481–8, ix–x.

    Google Scholar 

  83. Antfolk C, D’Alonzo M, Rosen B, Lundborg G, Sebelius F, Cipriani C. Sensory feedback in upper limb prosthetics. Expert Rev Med Devices. 2013;10(1):45–54.

    Article  Google Scholar 

  84. Chappell PH. Making sense of artificial hands. J Med Eng Technol. 2011;35(1):1–18.

    Article  Google Scholar 

  85. Riso RR. Strategies for providing upper extremity amputees with tactile and hand position feedback–moving closer to the bionic arm. Technol Health Care. 1999;7(6):401–9.

    Google Scholar 

  86. Puchhammer G. The tactile slip sensor: integration of a miniaturized sensory device on an myoelectric hand. Orthopädie-Technik Q. 2000;1:7–12.

    Google Scholar 

  87. Lederman SJ, Klatzky RL. Hand movements: a window into haptic object recognition. Cogn Psychol. 1987;19(3):342–68.

    Article  Google Scholar 

  88. Klatzky RL, Lederman SJ. Identifying objects from a haptic glance. Percept Psychophys. 1995;57(8):1111–23.

    Article  Google Scholar 

  89. Antfolk C, Bjorkman A, Frank SO, Sebelius F, Lundborg G, Rosen B. Sensory feedback from a prosthetic hand based on air-mediated pressure from the hand to the forearm skin. J Rehabil Med. 2012;44(8):702–7.

    Article  Google Scholar 

  90. Lundborg G, Rosen B, Lindberg S. Hearing as substitution for sensation: a new principle for artificial sensibility. J Hand Surg Am. 1999;24(2):219–24.

    Article  Google Scholar 

  91. Lundborg G, Bjorkman A, Hansson T, Nylander L, Nyman T, Rosen B. Artificial sensibility of the hand based on cortical audiotactile interaction: a study using functional magnetic resonance imaging. Scand J Plast Reconstr Surg Hand Surg. 2005;39(6):370–2.

    Article  Google Scholar 

  92. O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, et al. Active tactile exploration using a brain-machine-brain interface. Nature. 2011;479(7372):228–31.

    Article  Google Scholar 

  93. Micera S, Carpaneto J, Raspopovic S. Control of hand prostheses using peripheral information. IEEE Rev Biomed Eng. 2010;3:48–68.

    Article  Google Scholar 

  94. Horch K, Meek S, Taylor TG, Hutchinson DT. Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng. 2011;19(5):483–9.

    Article  Google Scholar 

  95. Lundborg G, Rosen B, Lindstrom K, Lindberg S. Artificial sensibility based on the use of piezoresistive sensors. Preliminary observations. J Hand Surg Br. 1998;23(5):620–6.

    Article  Google Scholar 

  96. Hernandez Arieta A, Yokoi H, Arai T, Yu W. Study on the effects of electrical stimulation on the pattern recognition for an EMG prosthetic application. Conf Proc IEEE Eng Med Biol Soc. 2005;7:6919–22.

    Google Scholar 

  97. Kaczmarek KA, Webster JG, Bach-y-Rita P, Tompkins WJ. Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans Biomed Eng. 1991;38(1):1–16.

    Article  Google Scholar 

  98. Cipriani C, D’Alonzo M, Carrozza MC. A miniature vibrotactile sensory substitution device for multifingered hand prosthetics. IEEE Trans Biomed Eng. 2012;59(2):400–8.

    Article  Google Scholar 

  99. Jones LA, Sarter NB. Tactile displays: guidance for their design and application. Hum Factors. 2008;50(1):90–111.

    Article  Google Scholar 

  100. Wilska A. On the vibrational sensitivity in different regions of the body surface. Acta Physiol Scand. 1954;31(2–3):284–9.

    Google Scholar 

  101. Antfolk C, D’Alonzo M, Controzzi M, Lundborg G, Rosen B, Sebelius F, et al. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: vibrotactile versus mechanotactile sensory feedback. IEEE Trans Neural Syst Rehabil Eng. 2013;21(1):112–20.

    Article  Google Scholar 

  102. Chatterjee K, Guo Z, Vogler EA, Siedlecki CA. Contributions of contact activation pathways of coagulation factor XII in plasma. J Biomed Mater Res A. 2009;90(1):27–34.

    Google Scholar 

  103. Stepp CE, Matsuoka Y. Relative to direct haptic feedback, remote vibrotactile feedback improves but slows object manipulation. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2089–92.

    Google Scholar 

  104. Bach-y-Rita P, Collins CC, editors. Sensory substitution and limb prosthesis. In: Proceedings of the third international symposium on advances in external control of human extremities; 1970.

    Google Scholar 

  105. Mann RW, Reimers SD. Kinesthetic sensing for the EMG controlled Boston arm. IEEE Trans Man Mach Syst. 1970;MM11:110–5.

    Article  Google Scholar 

  106. Pons JL, Ceres R, Rocon E. Objectives and technological approach to the development of the multifunctional MANUS upper limb prosthesis. Robotica. 2005;23:301–10.

    Article  Google Scholar 

  107. Pylatiuk C, Kargov A, Schulz S. Design and evaluation for myoelectric prosthetic hands. J Prosthet Orthot. 2006;18:57–61.

    Article  Google Scholar 

  108. Ramachandran VS, Blakeslee S. Phantoms in the brain: human nature and the architecture of the mind. London: Fourth Estate; 1999.

    Google Scholar 

  109. Borsook D, Becerra L, Fishman S, Edwards A, Jennings CL, Stojanovic M, et al. Acute plasticity in the human somatosensory cortex following amputation. Neuroreport. 1998;9(6):1013–7.

    Article  Google Scholar 

  110. Ramachandran VS. Behavioral and magnetoencephalographic correlates of plasticity in the adult human brain. Proc Natl Acad Sci U S A. 1993;90(22):10413–20.

    Article  Google Scholar 

  111. Schmalzl L, Thomke E, Ragno C, Nilseryd M, Stockselius A, Ehrsson HH. “Pulling telescoped phantoms out of the stump”: manipulating the perceived position of phantom limbs using a full-body illusion. Front Hum Neurosci. 2011;5:121.

    Google Scholar 

  112. Schmalzl L, Ragno C, Ehrsson HH. An alternative to traditional mirror therapy: illusory touch can reduce phantom pain when illusory movement does not. Clin J Pain. 2013 Feb 26.

    Google Scholar 

  113. Bjorkman A, Weibull A, Olsrud J, Ehrsson HH, Rosen B, Bjorkman-Burtscher IM. Phantom digit somatotopy: a functional magnetic resonance imaging study in forearm amputees. Eur J Neurosci. 2012;36(1):2098–106.

    Article  Google Scholar 

  114. Antfolk C, Balkenius C, Rosen B, Lundborg G, Sebelius F. SmartHand tactile display: a new concept for providing sensory feedback in hand prostheses. Scand J Plast Reconstr Surg Hand Surg. 2010;44(1):50–3.

    Article  Google Scholar 

  115. Brånemark PI. The osseointegration book. From calvarium to calcaneus. Berlin: Quintessence; 2005.

    Google Scholar 

  116. Lundborg G, Branemark PI, Rosen B. Osseointegrated thumb prostheses: a concept for fixation of digit prosthetic devices. J Hand Surg Am. 1996;21(2):216–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Lundborg, G. (2014). The Mind-Controlled Robotic Hand. In: The Hand and the Brain. Springer, London. https://doi.org/10.1007/978-1-4471-5334-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5334-4_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5333-7

  • Online ISBN: 978-1-4471-5334-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics