Advertisement

Losing a Hand

  • Göran Lundborg
Chapter

Abstract

Amputation of a hand results in profound synaptic reorganisations in the brain cortex. The cortical representational area of the amputated hand is at first ‘silent’ but rapidly becomes invaded by adjacent cortical areas. Cortical reorganisations can result in phantom sensation, a feeling that the lost hand is still there. Phantom sensation can sometimes be combined with severe phantom pain. Mirror treatment, based on an illusion that the lost hand is still attached, may be an effective way of treating severe phantom pain. Amputated fingers or hands can often be microsurgically replanted (reattached to the body). When a replanted hand is reinnervated, it resumes its correct position in the brain cortex. The salamander is unique among animals since it can spontaneously regenerate an amputated extremity. It has been suggested that the mechanism behind this phenomenon is based on an interaction of stem cell-like cells at the amputation level interacting with a specific Schwann cell-produced protein (nAG). If these mechanisms could 1 day be applied to humans, it would open up a totally new landscape for treating amputations.

Keywords

Somatosensory Cortex Brain Cortex Connective Tissue Cell Early Embryonic Stage Phantom Pain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Giummarra MJ, Georgiou-Karistianis N, Nicholls ME, Gibson SJ, Chou M, Bradshaw JL. Corporeal awareness and proprioceptive sense of the phantom. Br J Psychol. 2010;101(Pt 4):791–808.CrossRefGoogle Scholar
  2. 2.
    Ramachandran VS, Rogers-Ramachandran D, Stewart M. Perceptual correlates of massive cortical reorganization. Science. 1992;258(5085):1159–60.CrossRefGoogle Scholar
  3. 3.
    Ramachandran VS, Blakeslee S. Phantoms in the brain: human nature and the architecture of the mind. London: Fourth Estate; 1999.Google Scholar
  4. 4.
    Yang TT, Gallen C, Schwartz B, Bloom FE, Ramachandran VS, Cobb S. Sensory maps in the human brain. Nature. 1994;368(6472):592–3.CrossRefGoogle Scholar
  5. 5.
    Ramachandran VS, Altschuler EL. The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain. 2009;132(Pt 7):1693–710.CrossRefGoogle Scholar
  6. 6.
    Lundborg G. Nerve injury and repair. Regeneration, reconstruction and cortical remodelling. 2nd ed. Philadelphia: Elsevier; 2004.Google Scholar
  7. 7.
    Mercier C, Reilly KT, Vargas CD, Aballea A, Sirigu A. Mapping phantom movement representations in the motor cortex of amputees. Brain. 2006;129(Pt 8):2202–10.CrossRefGoogle Scholar
  8. 8.
    Di Pino G, Guglielmelli E, Rossini PM. Neuroplasticity in amputees: main implications on bidirectional interfacing of cybernetic hand prostheses. Prog Neurobiol. 2009;88(2):114–26.CrossRefGoogle Scholar
  9. 9.
    Wall JT, Xu J, Wang X. Human brain plasticity: an emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body. Brain Res Brain Res Rev. 2002;39(2–3):181–215.CrossRefGoogle Scholar
  10. 10.
    Kaas JH, Florence SL, Jain N. Subcortical contributions to massive cortical reorganizations. Neuron. 1999;22(4):657–60.CrossRefGoogle Scholar
  11. 11.
    Pons TP, Garraghty PE, Ommaya AK, Kaas JH, Taub E, Mishkin M. Massive cortical reorganization after sensory deafferentation in adult macaques. Science. 1991;252(5014):1857–60.CrossRefGoogle Scholar
  12. 12.
    Ramachandran VS, Stewart M, Rogers-Ramachandran DC. Perceptual correlates of massive cortical reorganization. Neuroreport. 1992;3(7):583–6.CrossRefGoogle Scholar
  13. 13.
    Elbert T, Flor H, Birbaumer N, Knecht S, Hampson S, Larbig W, et al. Extensive reorganization of the somatosensory cortex in adult humans after nervous system injury. Neuroreport. 1994;5(18):2593–7.CrossRefGoogle Scholar
  14. 14.
    Flor H, Elbert T, Muhlnickel W, Pantev C, Wienbruch C, Taub E. Cortical reorganization and phantom phenomena in congenital and traumatic upper-extremity amputees. Exp Brain Res. 1998;119(2):205–12.CrossRefGoogle Scholar
  15. 15.
    Borsook D, Becerra L, Fishman S, Edwards A, Jennings CL, Stojanovic M, et al. Acute plasticity in the human somatosensory cortex following amputation. Neuroreport. 1998;9(6):1013–7.CrossRefGoogle Scholar
  16. 16.
    Antfolk C, D’Alonzo M, Controzzi M, Lundborg G, Rosen B, Sebelius F, et al. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: vibrotactile versus mechanotactile sensory feedback. IEEE Trans Neural Syst Rehabil Eng. 2013;21(1):112–20.CrossRefGoogle Scholar
  17. 17.
    Ramachandran VS. Behavioral and magnetoencephalographic correlates of plasticity in the adult human brain. Proc Natl Acad Sci U S A. 1993;90(22):10413–20.CrossRefGoogle Scholar
  18. 18.
    Rosen B, Ehrsson HH, Antfolk C, Cipriani C, Sebelius F, Lundborg G. Referral of sensation to an advanced humanoid robotic hand prosthesis. Scand J Plast Reconstr Surg Hand Surg. 2009;43(5):260–6.CrossRefGoogle Scholar
  19. 19.
    Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol. 1984;224(4):591–605.CrossRefGoogle Scholar
  20. 20.
    Manger PR, Woods TM, Jones EG. Plasticity of the somatosensory cortical map in macaque monkeys after chronic partial amputation of a digit. Proc Biol Sci. 1996;263(1372):933–9.CrossRefGoogle Scholar
  21. 21.
    Weiss T, Miltner WH, Huonker R, Friedel R, Schmidt I, Taub E. Rapid functional plasticity of the somatosensory cortex after finger amputation. Exp Brain Res. 2000;134(2):199–203.CrossRefGoogle Scholar
  22. 22.
    Lundborg G, Richard P. Bunge memorial lecture. Nerve injury and repair – a challenge to the plastic brain. J Peripher Nerv Syst. 2003;8(4):209–26.CrossRefGoogle Scholar
  23. 23.
    Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995;375(6531):482–4.CrossRefGoogle Scholar
  24. 24.
    Knecht S, Henningsen H, Elbert T, Flor H, Hohling C, Pantev C, et al. Cortical reorganization in human amputees and mislocalization of painful stimuli to the phantom limb. Neurosci Lett. 1995;201(3):262–4.CrossRefGoogle Scholar
  25. 25.
    Knecht S, Soros P, Gurtler S, Imai T, Ringelstein EB, Henningsen H. Phantom sensations following acute pain. Pain. 1998;77(2):209–13.CrossRefGoogle Scholar
  26. 26.
    MacIver K, Lloyd DM, Kelly S, Roberts N, Nurmikko T. Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery. Brain. 2008;131(Pt 8):2181–91.CrossRefGoogle Scholar
  27. 27.
    Schmalzl L, Thomke E, Ragno C, Nilseryd M, Stockselius A, Ehrsson HH. “Pulling telescoped phantoms out of the stump”: manipulating the perceived position of phantom limbs using a full-body illusion. Front Hum Neurosci. 2011;5:121.Google Scholar
  28. 28.
    Ramachandran VS, Rogers-Ramachandran D, Cobb S. Touching the phantom limb. Nature. 1995;377(6549):489–90.CrossRefGoogle Scholar
  29. 29.
    Rosen B, Lundborg G. Training with a mirror in rehabilitation of the hand. Scand J Plast Reconstr Surg Hand Surg. 2005;39(2):104–8.CrossRefGoogle Scholar
  30. 30.
    Schmalzl L, Ragno C, Ehrsson HH. An alternative to traditional mirror therapy: illusory touch can reduce phantom pain when illusory movement does not. Clin J Pain. 2013 Feb 26.Google Scholar
  31. 31.
    Posner MA, Rinaldi E. Upper extremity replantations in Renaissance art. J Hand Surg Am. 2008;33(8):1440–1.CrossRefGoogle Scholar
  32. 32.
    Maricevich M, Carlsen B, Mardini S, Moran S. Upper extremity and digital replantation. Hand (N Y). 2011;6(4):356–63.CrossRefGoogle Scholar
  33. 33.
    Bjorkman A, Waites A, Rosen B, Lundborg G, Larsson EM. Cortical sensory and motor response in a patient whose hand has been replanted: one-year follow up with functional magnetic resonance imaging. Scand J Plast Reconstr Surg Hand Surg. 2007;41(2):70–6.CrossRefGoogle Scholar
  34. 34.
    Muneoka K, Han M, Gardiner DM. Regrowing human limbs. Sci Am. 2008;298(4):56–63.CrossRefGoogle Scholar
  35. 35.
    Sanchez Alvarado A. Developmental biology: a cellular view of regeneration. Nature. 2009;460(7251):39–40.CrossRefGoogle Scholar
  36. 36.
    Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP. Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science. 2007;318(5851):772–7.CrossRefGoogle Scholar
  37. 37.
    Stappenbeck TS, Miyoshi H. The role of stromal stem cells in tissue regeneration and wound repair. Science. 2009;324(5935):1666–9.CrossRefGoogle Scholar
  38. 38.
    Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature. 2009;460(7251):60–5.CrossRefGoogle Scholar
  39. 39.
    Straube WL, Brockes JP, Drechsel DN, Tanaka EM. Plasticity and reprogramming of differentiated cells in amphibian regeneration: partial purification of a serum factor that triggers cell cycle re-entry in differentiated muscle cells. Cloning Stem Cells. 2004;6(4):333–44.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Göran Lundborg
    • 1
  1. 1.Hand Surgery Department of Clinical SciencesMalmö Lund University Skäne University HospitalMalmöSweden

Personalised recommendations