Skip to main content

Guidelines for Improving Diesel Engine Characteristics

  • Chapter
  • First Online:
Green Diesel Engines

Part of the book series: Lecture Notes in Energy ((LNEN,volume 12))

  • 1793 Accesses

Abstract

Diesel engine characteristics depend significantly on the engine type. But, even for a given engine type, the engine characteristics can still be varied in a wide range in dependence on engine management, exhaust gas after treatment, and usage of alternative fuels (Fino et al. 2003; Gray and Frost 1998; Maiboom et al. 2008; Peng et al. 2008; Stanislaus et al. 2010; Twigg 2007) (Fig. 3.1). Engine management and alternative fuels usage offer a possibility to reduce the formation of harmful emissions. On the other hand, exhaust gas after treatment techniques enable a reduction of harmful emissions already produced by the engine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla, G. H., Soliman, H. A., Badr, O. A., & Abd-Rabbo, M. F. (2001). Effects of diluent admissions and intake air temperature in exhaust gas recirculation on the emissions of an indirect injection dual fuel engine. Energy Conversion and Management, 42(8), 1033–1045.

    Article  Google Scholar 

  • Abu-Qudais, M., Haddad, O., & Qudaisat, M. (2000). The effect of alcohol fumigation on diesel performance and emissions. Energy Conversion & Management, 41, 389–399.

    Article  Google Scholar 

  • Agarwal, A. K. (2007). Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science, 33, 233–271.

    Article  Google Scholar 

  • Agarwal, D., Singh, S. K., & Agarwal, A. K. (2011). Effect of exhaust gas recirculation (EGR) on performance, emissions, deposits and durability of a constant speed compression ignition engine. Applied Energy, 88, 2900–2907.

    Article  Google Scholar 

  • Alkemade, U. G., & Schumann, B. (2006). Engines and exhaust after treatment systems for future automotive applications. Solid State Ionics, 177, 2291–2296.

    Article  Google Scholar 

  • Al-Qurashi, K., Lueking, A. D., & Boehman, A. L. (2011). The deconvolution of the thermal, dilution, and chemical effects of exhaust gas recirculation (EGR) on the reactivity of engine and flame soot. Combustion and Flame, 158(9), 1696–1704.

    Article  Google Scholar 

  • Arcoumanis, C., Bae, C., Crookes, R., & Kinoshita, E. (2008). The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review. Fuel, 87, 1014–1030.

    Article  Google Scholar 

  • Armas, O., Ballesteros, R., Martosb, F. J., & Agudeloc, J. R. (2005). Characterization of light duty Diesel engine pollutant emissions using water-emulsified fuel. Fuel, 84, 1011–1018.

    Article  Google Scholar 

  • Armas, O., Yehliu, K., & Boehman, A. L. (2010). Effect of alternative fuels on exhaust emissions during diesel engine operation with matched combustion phasing. Fuel, 89, 438–456.

    Article  Google Scholar 

  • Bermúdez, V., Lujan, J. M., Pla, B., & Linares, W. G. (2011). Comparative study of regulated and unregulated gaseous emissions during NEDC in a light-duty diesel engine fuelled with Fischer Tropsch and biodiesel fuels. Biomass and Bioenergy, 35(2), 789–798.

    Article  Google Scholar 

  • Bhattacharyya, S., & Reddy, C. S. (1994). Vegetable oils as fuels for internal combustion engines: A review. Journal of Agricultural Engineering Research, 57, 157–166.

    Article  Google Scholar 

  • Bozbas, K. (2008). Biodiesel as an alternative motor fuel: Production and policies in the European Union. Renewable and Sustainable Energy Reviews, 12, 542–552.

    Article  Google Scholar 

  • Brusca, S., Lanzafame, R. (2001). Evaluation of the effects of water injection in a single cylinder CFR cetane engine. SAE paper 2001-01-2012

    Google Scholar 

  • Carlucci, A. P., Laforgia, D., Saracino, R., & Toto, G. (2011). Combustion and emissions control in diesel–methane dual fuel engines: The effects of methane supply method combined with variable in-cylinder charge bulk motion. Energy Conversion and Management, 52(8–9), 3004–3017.

    Article  Google Scholar 

  • Cheng, C. H., Cheung, C. S., Chan, T. L., Lee, S. C., & Yao, C. D. (2008). Experimental investigation on the performance, gaseous and particulate emissions of a methanol fumigated diesel engine. Science of the Total Environment, 389, 115–124.

    Article  Google Scholar 

  • Cheung, C. S., Zhu, R., & Huang, Z. (2011). Investigation on the gaseous and particulate emissions of a compression ignition engine fueled with diesel–dimethyl carbonate blends. Science of the Total Environment, 409(3), 523–529.

    Article  Google Scholar 

  • Chotwichien, A., Luengnaruemitchai, A., & Jai-In, S. (2009). Utilization of palm oil alkyl esters as an additive in ethanol–diesel and butanol–diesel blends. Fuel, 88(9), 1618–1624.

    Article  Google Scholar 

  • Cordiner, S., Gambino, M., Iannaccone, S., Rocco, V., & Scarcelli, R. (2008). Numerical and experimental analysis of combustion and exhaust emissions in a dual-fuel diesel/natural gas engine. Energy and Fuels, 22(3), 1418–1424.

    Article  Google Scholar 

  • Demirbas, A. (2007). Progress and recent trends in biofuels. Progress in Energy and Combustion Science, 33, 1–18.

    Article  Google Scholar 

  • Fino, D., Fino, P., Saracco, G., & Specchia, V. (2003). Innovative means for the catalytic regeneration of particulate traps for diesel exhaust cleaning. Chemical Engineering Science, 58, 951–958.

    Article  Google Scholar 

  • Forzatti, P., Lietti, L., Nova, I., & Tronconi, E. (2010). Diesel NOx aftertreatment catalytic technologies: Analogies in LNT and SCR catalytic chemistry. Catalysis Today, 151, 202–211.

    Article  Google Scholar 

  • Ghazikhani, M., Feyz, M. E., & Joharchi, A. (2010). Experimental investigation of the exhaust gas recirculation effects on irreversibility and brake specific fuel consumption of indirect injection diesel engines. Applied Thermal Engineering, 30, 1711–1718.

    Article  Google Scholar 

  • Gill, S. S., Tsolakis, A., Dearn, K. D., & Rodríguez-Fernández, J. (2011). Combustion characteristics and emissions of Fischer-Tropsch diesel fuels in IC engines. Progress in Energy and Combustion Science, 37(4), 503–523.

    Article  Google Scholar 

  • Gray, P. G., & Frost, J. C. (1998). Impact of catalyst on clean energy in road transportation. Energy & Fuels, 12, 1121–1129.

    Article  Google Scholar 

  • Hansen, A. C., Zhang, Q., & Lyne, P. W. L. (2005). Ethanol–diesel fuel blends—a review. Bioresource Technology, 96, 277–285.

    Article  Google Scholar 

  • Hayes, T.K., Savage, L.D., White, R.A., Sorenson, S.C. (1988). The effect of fumigation of different ethanol proofs on a turbocharged diesel engine. SAE Paper 880497

    Google Scholar 

  • He, B.Q., Wang, J.X., Shuai, S.J., Yan, X.G. (2004). Homogenous charge combustion and emissions of ethanol ignited by pilot diesel on diesel engines. SAE Paper 2004-01-0094

    Google Scholar 

  • Hossain, A. K., & Davies, P. A. (2010). Plant oils as fuels for compression ignition engines: A technical review and life-cycle analysis. Renewable Energy, 35, 1–13.

    Article  Google Scholar 

  • Huang, J., Wang, Y., Li, S., Roskilly, A. P., Yu, H., & Li, H. (2009). Experimental investigation on the performance and emissions of a diesel engine fuelled with ethanol-diesel blends. Applied Thermal Engineering, 29, 2484–2490.

    Article  Google Scholar 

  • Imahashi, T., Hashimoto, K., Hayashi, J. I., Yamada, T. (1995). Research on NOx reduction for large marine diesel engines. ISME Yokohama

    Google Scholar 

  • Jiang, Q. Q., Ottikkutti, P., Vangerpen, J. (1990). The effect of alcohol fumigation on diesel flame temperature and emissions. SAE Paper 900386

    Google Scholar 

  • Kadota, T., & Yamasaki, H. (2002). Recent advances in the combustion of water fuel emulsion. Progress in Energy and Combustion Science, 28, 385–404.

    Article  Google Scholar 

  • Kalam, M. A., Husnawan, M., & Masjuki, H. H. (2003). Exhaust emission and combustion evaluation of coconut oil-powered indirect injection diesel engine. Renewable Energy, 28, 2405–2415.

    Article  Google Scholar 

  • Kamasamudram, K., Currier, N. W., Chen, X., & Yezerets, A. (2010). Overview of the practically important behaviors of zeolite-based urea-SCR catalysts, using compact experimental protocol. Catalysis Today, 151, 212–222.

    Article  Google Scholar 

  • Kegl, B., Pehan, S. (2001). Reduction of diesel engine emissions by water injection. SAE paper 2001-01-3259

    Google Scholar 

  • Kim, H., Kim, Y., & Lee, K. (2008). A study of the characteristics of mixture formation and combustion in a PCCI engine using an early multiple injection strategy. Energy & Fuels, 22, 1542–1548.

    Article  Google Scholar 

  • Kim, H. J., Park, S. H., Lee, K. S., & Lee, C. S. (2011). A study of spray strategies on improvement of engine performance and emissions reduction characteristics in a DME fueled diesel engine. Energy, 36(3), 1802–1813.

    Article  MathSciNet  Google Scholar 

  • Kook, S., Park, S., & Bae, C. (2008). Influence of early fuel injection timings on premixing and combustion in a diesel engine. Energy & Fuels, 22, 331–337.

    Article  Google Scholar 

  • Kowalewicz, A., & Wojtyniak, M. (2005). Alternative fuels and their application to combustion engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219, 103–125.

    Article  Google Scholar 

  • Kwanchareon, P., Luengnaruemitchai, A., & Jai-In, S. (2007). Solubility of a diesel–biodiesel–ethanol blend, its fuel properties, and its emission characteristics from diesel engine. Fuel, 86(7–8), 1053–1061.

    Article  Google Scholar 

  • Lapuerta, M., Armas, O., & García-Contreras, R. (2007). Stability of diesel–bioethanol blends for use in diesel engines. Fuel, 86(10–11), 1351–1357.

    Article  Google Scholar 

  • Lapuerta, M., Armas, O., & García-Contreras, R. (2009). Effect of ethanol on blending stability and diesel engine emissions. Energy & Fuels, 23(9), 4343–4354.

    Article  Google Scholar 

  • Leahey, D. M., Jones, B. C., Gilligan, J. W., Brown, L. P., Hamilton, L. J., Gutteridge, C. E., Cowart, J. S., Caton, P. A. (2007). Combustion of biodiesel- and ethanol–diesel mixtures with intake injection. SAE Paper 2007-01-4011

    Google Scholar 

  • Lebedevas, S., Lebedeva, G., Makareviciene, V., Janulis, P., & Sendzikiene, E. (2009). Usage of fuel mixtures containing ethanol and rapeseed oil methyl esters in a diesel engine. Energy & Fuels, 23(1), 217–223.

    Article  Google Scholar 

  • Li, D., Zhen, H., Xingcai, L., Wu-gao, Z., & Jian-guang, Y. (2005). Physico-chemical properties of ethanol-diesel blend fuel and its effect on performance and emissions of diesel engines. Renewable Energy, 30, 967–976.

    Article  Google Scholar 

  • Liew, C., Li, H., Nuszkowski, J., Liu, S., Gatts, T., Atkinson, R., & Clark, N. (2010). An experimental investigation of the combustion process of a heavy-duty diesel engine enriched with H2. International Journal of Hydrogen Energy, 35, 11357–11365.

    Article  Google Scholar 

  • Lif, A., & Homlberg, K. (2006). Water-in-diesel emulsions and related systems. Advances in Colloid and Interface Science, 123–126, 231–239.

    Article  Google Scholar 

  • Lilik, G. K., Zhang, H., Herreros, J. M., Haworth, D. C., & Boehman, A. L. (2010). Hydrogen assisted diesel combustion. International Journal of Hydrogen Energy, 35, 4382–4398.

    Article  Google Scholar 

  • Ma, Z., Huang, Z., Li, C., Wang, X., & Miao, H. (2008). Combustion and emission characteristics of a diesel engine fuelled with diesel–propane blends. Fuel, 87(8–9), 1711–1717.

    Article  Google Scholar 

  • Maiboom, A., & Tauzia, X. (2011). NOx and PM emissions reduction on an automotive HSDI Diesel engine with water-in-diesel emulsion and EGR: An experimental study. Fuel, 90, 3179–3192.

    Article  Google Scholar 

  • Maiboom, A., Tauzia, X., & Hetet, J. F. (2008). Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine. Energy, 33, 22–34.

    Article  Google Scholar 

  • Misra, R. D., & Murthy, M. S. (2010). Straight vegetable oils usage in a compression ignition engine—A review. Renewable and Sustainable Energy Reviews, 14, 3005–3013.

    Article  Google Scholar 

  • Miyano, H., Yoshida, N., Nakai, T., Nagae, Y., Yasueda, S. (1995). Stratified fuel-water injection system for NOx reduction of diesel engine. ISME Yokohama

    Google Scholar 

  • Mustel, W. (1997). Achieving the 2004 heavy-duty diesel emissions using combination between electronic EGR and particulate trap regenerated by a cerium based fuel borne catalyst, 2. Dresden: Dresdner Motorenkolloquium.

    Google Scholar 

  • No, S. Y. (2011). Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review. Renewable and Sustainable Energy Reviews, 15, 131–149.

    Article  Google Scholar 

  • Nwafor, O. M. I. (2000). Effect of choice of pilot fuel on the performance of natural gas in diesel engines. Renewable Energy, 21(3–4), 495–504.

    Article  Google Scholar 

  • Nwafor, O. M. I. (2003). The effect of elevated fuel inlet temperature on performance of diesel engine running on neat vegetable oil at constant speed conditions. Renewable Energy, 28, 171–181.

    Article  Google Scholar 

  • Nwafor, O. M. I., & Rice, G. (1996). Performance of rapeseed oil blends in a diesel engine. Applied Energy, 4(4), 345–354.

    Article  Google Scholar 

  • Odaka, M., Koike, N., Tsokamoto, Y., Narusawa, K., Yoshida, K. (1991). Effects of EGR with a supplemental manifold water injection to control exhaust emissions from heavy-duty diesel powered vehicles. SAE paper 910739

    Google Scholar 

  • Park, J. W., Huh, K. Y., & Park, K. H. (2000). Experimental study on the combustion characteristics of emulsified diesel in a rapid compression and expansion machine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 214, 579–586.

    Article  Google Scholar 

  • Peng, H., Cui, Y., Shi, L., & Deng, K. (2008). Effects of exhaust gas recirculation (EGR) on combustion and emissions during cold start of direct injection (DI) diesel engine. Energy, 33, 471–479.

    Article  Google Scholar 

  • Poompipatpong, C., & Cheenkachorn, K. (2011). A modified diesel engine for natural gas operation: Performance and emission tests. Energy, 36(12), 6862–6866.

    Article  Google Scholar 

  • Purushothaman, K., & Nagarajan, G. (2009). Performance, emission and combustion characteristics of a compression ignition engine operating on neat orange oil. Renewable Energy, 34, 242–245.

    Article  Google Scholar 

  • Qi, D. H., Bian, Y. Z. H., Ma, Z. H. Y., Zhang, C. H. H., & Liu, S. H. Q. (2007). Combustion and exhaust emission characteristics of a compression ignition engine using liquefied petroleum gas–diesel blended fuel. Energy Conversion and Management, 48, 500–509.

    Article  Google Scholar 

  • Rakopolulus, C. D., Antopoulos, K. A., Rakopoulos, D. C., & Hountalas, D. T. (2008a). Multi-zone modeling of combustion and emissions formation in DI diesel engine operating on ethanol-diesel fuel blends. Energy Conversion & Management, 49, 625–643.

    Article  Google Scholar 

  • Rakopolulus, D. C., Rakopoulus, C. D., Giakoumis, E. G., Papagiannakis, R. G., & Kyritsis, D. C. (2008b). Experimental-stochastic investigation of the combustion cyclic variability in HSDI diesel engine using ethanol-diesel fuel blends. Fuel, 87, 1478–1491.

    Article  Google Scholar 

  • Rakopoulus, C. D., Antonopoulus, K. A., & Rakopoulus, D. C. (2007). Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol-diesel fuel blends. Energy, 32, 1791–1808.

    Article  Google Scholar 

  • Ramadhas, A. S., Jayaraj, S., & Muraleedharan, C. (2004). Use of vegetable oils as I.C. engine fuels—a review. Renewable Energy, 29, 727–742.

    Article  Google Scholar 

  • Reyes, Y., Aranda, D. A. G., Santander, L. A. M., Cavado, A., & Belchior, C. R. P. (2009). Action principles of cosolvent additives in ethanol diesel blends: stability studies. Energy & Fuels, 23(5), 2731–2735.

    Article  Google Scholar 

  • Ribeiro, N. M., Pinto, A. C., Quintella, C. M., da Rocha, G. O., Teixeira, L. S. G., & Guarieiro, L. L. N. (2007). The role of additives for diesel and diesel blended (ethanol or biodiesel) fuels: a review. Energy & Fuels, 21(4), 2433–2445.

    Article  Google Scholar 

  • Russo, D., Dassisti, M., Lawlor, V., & Olabi, A. G. (2012). State of the art of biofuels from pure plant oil. Renewable and Sustainable Energy Reviews, 16, 4056–4070.

    Article  Google Scholar 

  • Sahoo, B. B., Sahoo, N., & Saha, U. K. (2009). Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines—A critical review. Renewable and Sustainable Energy Reviews, 13(6–7), 1151–1184.

    Article  Google Scholar 

  • Samec, N., Kegl, B., & Dibble, R. W. (2002). Numerical and experimental study of water/oil emulsified fuel combustion in a diesel engine. Fuel, 81, 2035–2044.

    Article  Google Scholar 

  • Sampara, C. S. (2008). Global reaction kinetics for oxidation and storage in diesel oxidation catalysts. Dissertation. University of Michigan

    Google Scholar 

  • Saravanan, N., & Nagarajan, G. (2010). Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source. Applied Energy, 87, 2218–2229.

    Article  Google Scholar 

  • Saravanan, N., Nagarajan, G., Kalaiselvan, K. M., & Dhanasekaran, C. (2008). An experimental investigation on hydrogen as a dual fuel for diesel engine system with exhaust gas recirculation technique. Renewable Energy, 33, 422–427.

    Article  Google Scholar 

  • Selim, M. Y. E. (2001). Pressure–time characteristics in diesel engine fueled with natural gas. Renewable Energy, 22, 473–489.

    Article  Google Scholar 

  • Sitshebo, S., Tsolakis, A., & Theinnoi, K. (2009). Promoting hydrocarbon-SCR of NOx in diesel engine exhaust by hydrogen and fuel reforming. International Journal of Hydrogen Energy, 34, 7842–7850.

    Article  Google Scholar 

  • Stanglmaier, R. H., Dingle, P. J., & Stewart, D. W. (2008). Cycle-controlled water injection for steady-state and transient emissions reduction from a heavy-duty diesel engine. Journal of Engineering for Gas Turbine and Power, 130, 103–111.

    Article  Google Scholar 

  • Stanislaus, A., Marafi, A., & Rana, M. S. (2010). Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catalyst Today, 153, 1–68.

    Article  Google Scholar 

  • Subramanian, K. A. (2011). A comparison of water-diesel emulsion and timed injection of water into the intake manifold of a diesel engine for simultaneous control of NO and smoke emissions. Energy Conversion and Management, 52, 849–857.

    Article  Google Scholar 

  • Surawski, N., Miljevic, B., Roberts, B. A., Modini, R., Situ, R., Brown, R. J., Bottle, S. E., & Ristovski, Z. D. (2010). Particle emissions, volatility, and toxicity from an ethanol fumigated compression ignition engine. Environmental Science and Technology, 44, 229–235.

    Article  Google Scholar 

  • Suzuki, T., (1997). Development and perspective of the diesel combustion system for commercial vehicles. IMechE Combustion Engine Group Prestige Lecture, London.

    Google Scholar 

  • Tauzia, X., Maiboom, A., & Shah, S. R. (2010). Experimental study of inlet manifold water injection on combustion and emissions of an automotive direct injection Diesel engine. Energy, 35, 3628–3639.

    Article  Google Scholar 

  • Tesfa, B., Mishra, R., Gu, F., & Ball, A. D. (2012). Water injection effects on the performance and emission characteristics of a CI engine operating with biodiesel. Renewable Energy, 37, 333–344.

    Article  Google Scholar 

  • Torres-Jimenez, E., Dorado, M. P., & Kegl, B. (2011a). Experimental investigation on injection characteristics of bioethanol–diesel fuel and bioethanol–biodiesel blends. Fuel, 90, 1968–1979.

    Article  Google Scholar 

  • Torres-Jimenez, E., SvoljÅ¡ak-Jerman, M., Gregorc, A., Lisec, I., Dorado, M. P., & Kegl, B. (2010). Physical and chemical properties of ethanol–biodiesel blends for diesel engines. Energy & Fuels, 24, 2002–2009.

    Article  Google Scholar 

  • Torres-Jimenez, E., SvoljÅ¡ak-Jerman, M., Gregorc, A., Lisec, I., Dorado, M. P., & Kegl, B. (2011b). Physical and chemical properties of ethanol–diesel fuel blends. Fuel, 90, 795–802.

    Article  Google Scholar 

  • Twigg, M. V. (2007). Progress and future challenges in controlling automotive exhaust gas emissions. Applied Catalyst B: Environmental, 70, 2–15.

    Article  Google Scholar 

  • Wang, J., Mao, X., Zhu, K., Song, J., & Zhuo, B. (2009). An intelligent diagnostic tool for electronically controlled diesel engine. Mechatronics, 19, 859–867.

    Article  Google Scholar 

  • Wang, L. J., Song, R. Z., Zou, H. B., Liu, S. H., & Zhou, L. B. (2008). Study on combustion characteristics of a methanol diesel dual fuel compression ignition engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222, 619–627.

    Article  Google Scholar 

  • Weber de Menezes, E., da Silva, R., Cataluña, R., & Ortega, R. J. C. (2006). Effect of ethers and ether/ethanol additives on the physicochemical properties of diesel fuel and on engine tests. Fuel, 85(5–6), 815–822.

    Article  Google Scholar 

  • Xiaolu, L., Hongyan, C., Zhiyong, Z., & Zhen, H. (2006). Study of combustion and emission characteristics of a diesel engine operated with dimethyl carbonate. Energy Conversion and Management, 47(11–12), 1438–1448.

    Article  Google Scholar 

  • Yao, C., Cheung, C. S., Cheng, C., Wang, Y., Chan, T. L., & Lee, S. C. (2008). Effect of diesel/methanol compound combustion on diesel engine combustion and emissions. Energy Conversion and Management, 49(6), 1696–1704.

    Article  Google Scholar 

  • Youn, I. M., Park, S. H., Roh, H. G., & Lee, C. S. (2011). Investigation on the fuel spray and emission reduction characteristics for dimethyl ether (DME) fueled multi-cylinder diesel engine with common-rail injection system. Fuel Processing Technology, 92(7), 1280–1287.

    Article  Google Scholar 

  • Zhang, Z. H., Cheung, C. S., Chan, T. L., & Yao, C. D. (2009). Emission reduction from diesel engine using fumigation methanol and diesel oxidation catalyst. Science of the Total Environment, 407, 4497–4504.

    Article  Google Scholar 

  • Zhang, Z. H., Cheung, C. S., Chan, T. L., & Yao, C. D. (2010). Experimental investigation on regulated and unregulated emissions of a diesel/methanol compound combustion engine with and without diesel oxidation catalyst. Science of the Total Environment, 408(4), 865–872.

    Article  Google Scholar 

  • Zheng, M., Reader, G. T., & Hawley, J. G. (2004). Diesel engine exhaust gas recirculation—A review on advanced and novel concepts. Energy Conversion and Management, 45(6), 883–900.

    Article  Google Scholar 

  • Zhu, Z., Li, D. K., Liu, J., Wei, Y. J., & Liu, S. H. (2012). Investigation on the regulated and unregulated emissions of a DME engine under different injection timing. Applied Thermal Engineering, 35, 9–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Kegl, B., Kegl, M., Pehan, S. (2013). Guidelines for Improving Diesel Engine Characteristics. In: Green Diesel Engines. Lecture Notes in Energy, vol 12. Springer, London. https://doi.org/10.1007/978-1-4471-5325-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5325-2_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5324-5

  • Online ISBN: 978-1-4471-5325-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics