Skip to main content

Understanding the Genetic Basis of Atrial Fibrillation: Towards a Pharmacogenetic Approach for Arrhythmia Treatment

  • Chapter
  • First Online:
  • 3403 Accesses

Abstract

Atrial fibrillation is the most common sustained cardiac arrhythmia, and affected individuals suffer from increased rates of heart failure, stroke, and death. Despite the enormous clinical burden that it exerts on patients and health care systems, contemporary treatment strategies have only modest efficacy which likely stems from our limited understanding of its underlying pathophysiology. Epidemiological studies have provided unequivocal evidence that the arrhythmia has a substantial heritable component. Subsequent investigations into the genetics underlying AF have suggested that there is considerable interindividual variability in the pathophysiology characterizing the arrhythmia. This heterogeneity may partly account for the poor treatment efficacy of current therapies. Subdividing AF into mechanistic subtypes on the basis of genotype serves to illustrate the heterogeneous nature of the arrhythmia and may ultimately help to guide treatment strategies. A pharmacogenetic approach to the management of AF may lead to dramatic improvements in treatment efficacy and improved patient outcomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dorian P, Guerra PG, Kerr CR, et al. Validation of a new simple scale to measure symptoms in atrial fibrillation: the Canadian Cardiovascular Society Severity in Atrial Fibrillation scale. Circ Arrhythm Electrophysiol. 2009;2:218–24.

    Article  PubMed  Google Scholar 

  2. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991;22:983–8.

    Article  CAS  PubMed  Google Scholar 

  3. Benjamin EJ, Wolf PA, D’Agostino RB, et al. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation. 1998;98:946–52.

    Article  CAS  PubMed  Google Scholar 

  4. Coyne KS, Paramore C, Grandy S, et al. Assessing the direct costs of treating nonvalvular atrial fibrillation in the United States. Value Health. 2006;9:348–56.

    Article  PubMed  Google Scholar 

  5. Miyasaka Y, Barnes ME, Gersh BJ, et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 2006;114:119–25.

    Article  PubMed  Google Scholar 

  6. The atrial fibrillation follow-up investigation of rhythm management (AFFIRM) investigators. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med. 2002;347:1825–33.

    Article  Google Scholar 

  7. Shah R, Freeman J, Shilane D, et al. Procedural complications, rehospitalizations, and repeat procedures after catheter ablation for atrial fibrillation. J Am Coll Cardiol. 2012;59:143–9.

    Article  PubMed  Google Scholar 

  8. Nattel S. New ideas about atrial fibrillation 50 years on. Nature. 2002;415:219–26.

    Article  CAS  PubMed  Google Scholar 

  9. Roberts JD, Gollob MH. Impact of genetic discoveries on the classification of lone atrial fibrillation. J Am Coll Cardiol. 2010;55:705–12.

    Article  CAS  PubMed  Google Scholar 

  10. Benjamin EJ, Levy D, Vaziri SM. Independent risk factors for atrial fibrillation in a population-based cohort: The Framingham Heart study. JAMA. 1994;271:840–4.

    Article  CAS  PubMed  Google Scholar 

  11. Kopecky SL, Gersh BJ, McGoon MD, et al. The natural history of lone atrial fibrillation. A population-based study over three decades. N Engl J Med. 1987;317:669–74.

    Article  CAS  PubMed  Google Scholar 

  12. Wolff L. Familial auricular fibrillation. N Engl J Med. 1943;229:396–7.

    Article  Google Scholar 

  13. Marcus GM, Smith LM, Vittinghoff E, et al. A first-degree family history in lone atrial fibrillation patients. Heart Rhythm. 2008;5:826–30.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ellinor PT, Yoerger DM, Ruskin JN, et al. Familial aggregation in lone atrial fibrillation. Hum Genet. 2005;188:179–84.

    Article  Google Scholar 

  15. Fox CS, Parise H, D’Agostino Sr RB, Lloyd-Jones DM, Vasan RS, Wang TJ, Levy D, Wolf PA, Benjamin EJ. Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA. 2004;291:2851–5.

    Article  CAS  PubMed  Google Scholar 

  16. Arnar DO, Thorvaldsson S, Manolio TA, Thorgeirsson G, Kristjansson K, Hakonarson H, Stefansson K. Familial aggregation of atrial fibrillation in Iceland. Eur Heart J. 2006;27:708–12.

    Article  PubMed  Google Scholar 

  17. Lubitz SA, Yin X, Fontes JD, et al. Association between familial atrial fibrillation and risk of new-onset atrial fibrillation. JAMA. 2010;304:2263–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Brugada R, Tapscott T, Czernuszewicz GZ, et al. Identification of a genetic locus for familial atrial fibrillation. N Engl J Med. 1997;336:905–11.

    Article  CAS  PubMed  Google Scholar 

  19. Darbar D, Herron KJ, Ballew JD, et al. Familial atrial fibrillation is a genetically heterogeneous disorder. J Am Coll Cardiol. 2003;41:2185–92.

    Article  PubMed  Google Scholar 

  20. Darbar D, Hardy A, Haines JL, et al. Prolonged signal-averaged P-wave duration as an intermediate phenotype for familial atrial fibrillation. J Am Coll Cardiol. 2008;51:1083–9.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ellinor PT, Shin JT, Moore RK, Yoerger DM, et al. Locus for atrial fibrillation maps to chromosome 6q14-16. Circulation. 2003;107:2880–3.

    Article  PubMed  Google Scholar 

  22. Volders PG, Zhu Q, Timmermans C, et al. Mapping a novel locus for familial atrial fibrillation on chromosome 10p11-q21. Heart Rhythm. 2007;4:469–75.

    Article  PubMed  Google Scholar 

  23. Chen YH, Xu WJ, Bendahhou S, et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science. 2003;299:251–4.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novel potassium channel gene: KvLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996;12:17–23.

    Article  PubMed  Google Scholar 

  25. Katz AM. Cardiac ion channels. N Engl J Med. 1993;328:1244–51.

    Article  CAS  PubMed  Google Scholar 

  26. Moe GK, Rheinboldt WC, Abildskov JA. A computer model of atrial fibrillation. Am Heart J. 1964;67:200–20.

    Article  CAS  PubMed  Google Scholar 

  27. Das S, Makino S, Melman YF, et al. Mutation in the S3 segment of KCNQ1 results in familial lone atrial fibrillation. Heart Rhythm. 2009;6:1146–53.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Otway R, Vandenberg JI, Guo G, et al. Stretch-sensitive KCNQ1 mutation. A link between genetic and environmental factors in the pathogenesis of atrial fibrillation? J Am Coll Cardiol. 2007;49:578–86.

    Article  CAS  PubMed  Google Scholar 

  29. Lundby A, Ravn LS, Svendsen JH, et al. KCNQ1 mutation Q147R is associated with atrial fibrillation and prolonged QT interval. Heart Rhythm. 2007;4:1532–41.

    Article  PubMed  Google Scholar 

  30. Yang Y, Xia M, Jin Q, et al. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am J Hum Genet. 2004;75:899–905.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Xia M, Jin Q, Bendahhaou S, et al. A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem Biophys Res Commun. 2005;332:1012–9.

    Article  CAS  PubMed  Google Scholar 

  32. Ravn LS, Aizawa Y, Pollevick GD, et al. Gain of function in IKs secondary to a mutation in KCNE5 associated with atrial fibrillation. Heart Rhythm. 2008;5:427–35.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Tinel N, Diochot S, Borsotto M, et al. KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel. EMBO J. 2000;19:6326–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Plaster NM, Tawil R, Tristani-Firouzi M, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell. 2001;105:511–9.

    Article  CAS  PubMed  Google Scholar 

  35. Rensma PL, Allessie MA, Lammers WJ, et al. Length of excitation wave and susceptibility to reentrant atrial arrhythmias in normal conscious dogs. Circ Res. 1988;62:395–410.

    Article  CAS  PubMed  Google Scholar 

  36. Singh S, Zoble RG, Yellen L, et al. Efficacy and safety of oral dofetilide in converting to and maintaining sinus rhythm in patients with chronic atrial fibrillation or atrial flutter: the symptomatic atrial fibrillation investigative research on dofetilide (SAFIRE-D) study. Circulation. 2000;102:2385–90.

    Article  CAS  PubMed  Google Scholar 

  37. Satoh T, Zipes DP. Cesium-induced atrial tachycardia degenerating into atrial fibrillation in dogs: atrial torsades de pointes? J Cardiovasc Electrophysiol. 1998;9:970–5.

    Article  CAS  PubMed  Google Scholar 

  38. Olson TM, Alekseev AE, Liu XK, et al. Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet. 2006;15:2185–91.

    Article  CAS  PubMed  Google Scholar 

  39. Yang Y, Li J, Lin X, et al. Novel KCNA5 loss-of-function mutations responsible for atrial fibrillation. J Hum Genet. 2009;54:277–83.

    Article  CAS  PubMed  Google Scholar 

  40. Yang T, Yang P, Roden DM, et al. Novel KCNA5 mutation implicates tyrosine kinase signaling in human atrial fibrillation. Heart Rhythm. 2010;7:1246–52.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanisms for idiopathic ventricular fibrillation. Nature. 1998;392:293–6.

    Article  CAS  PubMed  Google Scholar 

  42. Wang Q, Shen J, Splawski I, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80:805–11.

    Article  CAS  PubMed  Google Scholar 

  43. Benson DW, Wang DW, Dyment M, et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest. 2003;112:1019–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Darbar D, Kannankeril PJ, Donahue BS, et al. Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation. Circulation. 2008;117:1927–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Ellinor PT, Nam EG, Shea MA, et al. Cardiac sodium channel mutation in atrial fibrillation. Heart Rhythm. 2008;5:99–105.

    Article  PubMed  Google Scholar 

  46. Herve JC, Bourmeyster N, Sarrouilhe D, et al. Gap junctional complexes: from partners to functions. Prog Biophys Mol Biol. 2007;94:29–65.

    Article  CAS  PubMed  Google Scholar 

  47. Vozzi C, Dupont E, Coppen SR, et al. Chamber-related differences in connexin expression in the human heart. J Mol Cell Cardiol. 1999;31:991–1003.

    Article  CAS  PubMed  Google Scholar 

  48. Hagendorff A, Schumacher B, Kirchhoff S, et al. Conduction disturbances and increased atrial vulnerability in Connexin40-deficient mice analyzed by transesophageal stimulation. Circulation. 1999;99:1508–15.

    Article  CAS  PubMed  Google Scholar 

  49. Gollob MH, Jones DL, Krahn AD, et al. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med. 2006;354:2677–88.

    Article  CAS  PubMed  Google Scholar 

  50. Thibodeau IL, Xu J, Li Q, et al. Paradigm of genetic mosaicism and lone atrial fibrillation: physiological characterization of a connexin 43-deletion mutant identified from atrial tissue. Circulation. 2010;122:236–44.

    Article  CAS  PubMed  Google Scholar 

  51. Yang YQ, Liu X, Zhang XL, et al. Novel connexin40 missense mutations in patients with familial atrial fibrillation. Europace. 2010;12:1421–7.

    Article  PubMed  Google Scholar 

  52. Yang YQ, Zhang XL, Wang XH, et al. Connexin40 nonsense mutation in familial atrial fibrillation. Int J Mol Med. 2010;26:605–10.

    CAS  PubMed  Google Scholar 

  53. Wirka RC, Gore S, Van Wagoner DR, et al. A common connexin-40 gene promoter variant affects connexin-40 expression in human atria and is associated with atrial fibrillation. Circ Arrhythm Electrophysiol. 2011;4:87–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Verma V, Larsen BD, Coombs W, et al. Novel pharmacophores of connexin43 based on the “RXP” series of Cx43-binding peptides. Circ Res. 2009;105:176–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Macia E, Dolmatova E, Cabo C, et al. Characterization of gap junction remodeling in epicardial border zone of healing canine infarcts and electrophysiological effects of partial reversal by rotigaptide. Circ Arrhythm Electrophysiol. 2011;4:344–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Laurent G, Leong-Poi H, Mangat I, et al. Effects of chronic gap junction conduction-enhancing antiarrhythmic peptide GAP-134 administration on experimental atrial fibrillation in dogs. Circ Arrhythm Electrophysiol. 2009;2:171–8.

    Article  CAS  PubMed  Google Scholar 

  57. Bennett PB, Yazawa K, Makita N, et al. Molecular mechanism for an inherited cardiac arrhythmia. Nature. 1995;376:683–5.

    Article  CAS  PubMed  Google Scholar 

  58. Makiyama T, Akao M, Shizuta S, et al. A novel SCN5A gain-of-function mutation M1875T associated with familial atrial fibrillation. J Am Coll Cardiol. 2008;52:1326–34.

    Article  CAS  PubMed  Google Scholar 

  59. Li Q, Huang H, Liu G, et al. Gain-of-function mutation of Nav1.5 in atrial fibrillation enhances cellular excitability and lowers the threshold for action potential firing. Biochem Biophys Res Commun. 2009;380:132–7.

    Article  CAS  PubMed  Google Scholar 

  60. Scornik FS, Desai M, Brugada R, et al. Functional expression of “cardiac-type” Nav1.5 sodium channel in canine intracardiac ganglia. Heart Rhythm. 2006;3:842–50.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Rubattu S, Sciarretta S, Valenti V, et al. Natriuretic peptides: an update on bioactivity, potential therapeutic use, and implication in cardiovascular diseases. Am J Hypertens. 2008;21:733–41.

    Article  CAS  PubMed  Google Scholar 

  62. Sorbera LA, Morad M. Atrionatriuretic peptide transforms cardiac sodium channels into calcium-conducting channels. Science. 1990;247:969–73.

    Article  CAS  PubMed  Google Scholar 

  63. Perrin MJ, Gollob MH. The role of atrial natriuretic peptide in modulating cardiac electrophysiology. Heart Rhythm. 2012;9(4):610–5.

    Article  PubMed  Google Scholar 

  64. Ellinor PT, Low AF, Patton KK, et al. Discordant atrial natriuretic peptide and brain natriuretic peptide levels in lone atrial fibrillation. J Am Coll Cardiol. 2005;45:82–6.

    Article  CAS  PubMed  Google Scholar 

  65. Hodgson-Zingman DM, Karst ML, Zingman LV, et al. Atrial natriuretic peptide frameshift mutation in familial atrial fibrillation. N Engl J Med. 2008;359:158–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med. 1998;339:321–8.

    Article  CAS  PubMed  Google Scholar 

  67. Chen HH, Lainchbury JG, Burnett Jr JC. Natriuretic peptide receptors and neutral endopeptidase in mediating the renal actions of a new therapeutic synthetic natriuretic peptide Dendroaspis natriuretic peptide. J Am Coll Cardiol. 2002;40:1186–91.

    Article  CAS  PubMed  Google Scholar 

  68. Conen D, Glynn RJ, Buring JE, et al. Natriuretic peptide precursor A gene polymorphisms and risk of blood pressure progression and incident hypertension. Hypertension. 2007;50:1114–9.

    Article  CAS  PubMed  Google Scholar 

  69. Rubattu S, Ridker P, Stampfer MJ, et al. The gene encoding atrial natriuretic peptide and the risk of human stroke. Circulation. 1999;100:1722–6.

    Article  CAS  PubMed  Google Scholar 

  70. Ren X, Xu C, Zhan C, et al. Identification of NPPA variants associated with atrial fibrillation in a Chinese Gene ID population. Clin Chim Acta. 2010;411:481–5.

    Article  CAS  PubMed  Google Scholar 

  71. Roberts JD, Davies RW, Lubitz SA, et al. Evaluation of non-synonymous NPPA single nucleotide polymorphisms in atrial fibrillation. Europace. 2010;12:1078–83.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Wang TJ, Larson MG, Levy D, et al. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham Heart Study. Circulation. 2003;107:2920–5.

    Article  PubMed  Google Scholar 

  73. Coumel P, Attuel P, Lavallee J, et al. The atrial arrhythmia syndrome of vagal origin. Arch Mal Coeur Vaiss. 1978;71:645–56.

    CAS  PubMed  Google Scholar 

  74. Kovoor P, Wickman K, Maguire CT, et al. Evaluation of the role of IKACh in atrial fibrillation using a mouse knockout model. J Am Coll Cardiol. 2001;37:2136–43.

    Article  CAS  PubMed  Google Scholar 

  75. Liu L, Nattel S. Differing sympathetic and vagal effects on atrial fibrillation in dogs: role of refractoriness heterogeneity. Am J Physiol. 1997;273:H805–16.

    CAS  PubMed  Google Scholar 

  76. Gudbjartsson DF, Arnar DO, Helgadottir A, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007;448:353–7.

    Article  CAS  PubMed  Google Scholar 

  77. Wang J, Klysik E, Sood S, et al. Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification. Proc Natl Acad Sci USA. 2010;107:9753–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Chinchilla A, Daimi H, Lozano-Velasco E, et al. PITX2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis. Circ Cardiovasc Genet. 2011;4:269–79.

    Article  CAS  PubMed  Google Scholar 

  79. Benjamin EJ, Rice KM, Arking DE, et al. Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet. 2009;41:879–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Gudbjartsson DF, Holm H, Gretarsdottir S, et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet. 2009;41:876–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Burgner D, Davila S, Breunis WB, et al. A genome-wide association study identifies novel and functionally related susceptibility Loci for Kawasaki disease. PLoS Genet. 2009;5:e1000319.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Ellinor PT, Lunetta KL, Glazer NL, et al. Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet. 2010;42:240–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Husser D, Adams V, Piorkowski C, Hindricks G, Bollman A. Chromosome 4q25 variants and atrial fibrillation recurrence after catheter ablation. J Am Coll Cardiol. 2010;55:747–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Gollob MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Roberts, J.D., Gollob, M.H. (2014). Understanding the Genetic Basis of Atrial Fibrillation: Towards a Pharmacogenetic Approach for Arrhythmia Treatment. In: Kibos, A., Knight, B., Essebag, V., Fishberger, S., Slevin, M., Țintoiu, I. (eds) Cardiac Arrhythmias. Springer, London. https://doi.org/10.1007/978-1-4471-5316-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5316-0_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5315-3

  • Online ISBN: 978-1-4471-5316-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics