Skip to main content

Anatomy and Physiology of the Atrioventricular Node: What Do We Know Today?

  • Chapter
  • First Online:
Cardiac Arrhythmias

Abstract

Atrioventricular (AV) node consists of a part of the sole pathway of impulse conduction from the atria to the ventricles. It becomes the base of occurrence and maintenance of various arrhythmias involving this region by special electrophysiological characters as follows: The conduction across the node is quite slow, it functions as two separated conductors with property of fast or slow conduction, and it has the automaticity. AV junctional area including the node itself potentially works as the ectopic center of a subsidiary pacemaker when the sinus node as the primary pacemaker fails to control the cardiac rhythm. Muscular bundles consisting of dual AV pathways are not anatomically distinguished but can be functionally differentiated by the difference of conduction property and refractoriness. A fast pathway connects with the center of the node from anterior part of interatrial septum, and a slow pathway does from posteroinferior area to the tricuspid valve. In cells of slow pathway, the occurrence of automaticity is determined and the expression of ion channels is similar to ones in the center of the node. These facts suggest that the dual-pathway physiology of the AV node is not only formed by special electrophysiological property of cells but based on the morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AN:

Atrio-nodal

AP:

Action potential

AV:

Atrioventricular

AVNRT:

Atrioventricular nodal reentrant tachycardia

CS:

Coronary sinus

Cx:

Connexin

DAVNP:

Dual atrioventricular nodal pathway

FP:

Fast pathway

I Ca,L :

L-type calcium channel current

I Ca,T :

T-type calcium channel current

I K1 :

Inward rectifier potassium current

IVC:

Inferior vena cava

MV:

Mitral valve

NH:

Nodo-His

PNE:

Posterior nodal extension

RA:

Right atrium

RV:

Right ventricle

SP:

Slow pathway

TV:

Tricuspid valve

References

  1. Tawara S. Eine Anatomische-Histologishe Studie Uber Das Atrioventrikularbundel Und Die Purkinjeschen. In: Tawara S, editor. Das Reizleitungssystem Des Saugetierherzens. Faden. Jena/Deutschland: Verlag Von Gustav Fisher; 1906.

    Google Scholar 

  2. Janse MJ, Loh P, de Bakker JM. Is the atrium involved in AV nodal reentry? In: Mazgalev TN, Tchou PJ, editors. Atrial-AV nodal electrophysiology: a view from the millennium. Armonk: Futura; 2000.

    Google Scholar 

  3. Shah D, Haissaguerre M, Gaita F. Slow pathway ablation for atrioventricular nodal reentry. J Cardiovasc Electrophysiol. 2002;13:1054–5.

    Article  PubMed  Google Scholar 

  4. Haissaguerre M, Gaita F, Fisher B, Commenges D, Montserrat P, d’Ivernois C, et al. Elimination of atrioventricular nodal reentrant tachycardia using discrete slow potentials to guide application of radiofrequency energy. Circulation. 1992;85:2162–75.

    Article  CAS  PubMed  Google Scholar 

  5. Jackman WM, Beckman KJ, McClelland JH, Wang X, Friday KJ, Roman CA, et al. Treatment of supraventricular tachycardia due to atrioventricular nodal reentry by radiofrequency catheter ablation of slow-pathway conduction. N Engl J Med. 1992;327:313–8.

    Article  CAS  PubMed  Google Scholar 

  6. Koch W. Weitere Mitteilungen Uber Den Sinusknoten Des Hertzens. Verh Dtsch Ges Pathol. 1989;13:85–92.

    Google Scholar 

  7. DeFelice LJ, Challice CE. Anatomic and ultrastructural study of the electrophysiological atrioventricular node of the rabbit. Circ Res. 1969;24:457–74.

    Article  CAS  PubMed  Google Scholar 

  8. Becker AE, Anderson RH. Morphology of the human atrioventricular junctional area. In: Wellens HJJ, Lie KI, Janse MJ, Stenfert HE, Kroese BV, editors. The conduction system of the heart. Leiden: Stenfert Kroese; 1976. p. 263–86.

    Google Scholar 

  9. Anderson RH, Janse MJ, van Capelle FJ, Billette J, Becker AE, Durrer D. A combined morphological and electrophysiological study of the atrioventricular junction of the rabbit heart. Circ Res. 1974;35:909–29.

    Article  CAS  PubMed  Google Scholar 

  10. Petrecca K, Shrier A. Spatial distribution of ion channels, receptors and innervation in the AV junction. In: Mazgalev TN, Tchou PJ, editors. Atrial-AV nodal electrophysiology: a view from the millennium. Armonk: Futura; 2000.

    Google Scholar 

  11. Billette J. What is the atrioventricular junction? Some clues in sorting out its structure-function relationship. J Cardiovasc Electrophysiol. 2002;13:515–8.

    Article  PubMed  Google Scholar 

  12. Anderson RH, Ho SY, Becker AE. Anatomy of human AV junction revisited. Anat Rec. 2000;260:81–91.

    Article  CAS  PubMed  Google Scholar 

  13. Anderson RH, Cook AC. The structure and components of the atrial chambers. Europace. 2007;9:vi3–9.

    Article  PubMed  Google Scholar 

  14. Inoue S, Becker AE. Posterior extensions of the human compact atrioventricular junction. A neglected anatomic feature of potential clinical significance. Circulation. 1998;97:188–93.

    Article  CAS  PubMed  Google Scholar 

  15. Sanchez-Quintana D, Davies DW, Ho SY, Oslizlok P, Anderson RH. Architecture of the atrial musculature in and around the triangle of Koch: its potential relevance to atrioventricular nodal reentry. J Cardiovasc Electrophysiol. 1997;8:1396–407.

    Article  CAS  PubMed  Google Scholar 

  16. Lamers WH, Wessels A, Verbeek FJ, Moorman AF, Viragh S, Wenink AC, et al. New findings concerning ventricular septation in the human heart. Implications for maldevelopment. Circulation. 1992;86:1194–205.

    Article  CAS  PubMed  Google Scholar 

  17. Miyazaki H, Abe K, Yamane T, Date T, Tsurusaki T, Honda Y, et al. Adenosine-sensitive atrial reentrant tachycardia originating near tricuspid annulus: electrophysiological characteristics, pharmacological response and effects of radiofrequency ablation. Circ J. 2002;66 Suppl 1:246.

    Google Scholar 

  18. Yamabe H, Tanaka Y, Okumura K, Morikami Y, Kimura Y, Hokamura Y, et al. Electrophysiologic characteristics of verapamil- sensitive atrial tachycardia originating from the atrioventricular annulus. Am J Cardiol. 2005;95:1425–30.

    Article  CAS  PubMed  Google Scholar 

  19. Matsuyama T, Inoue S, Tanno K, Makino M, Ogawa G, Sakai T, et al. Ectopic nodal structures in a patient with atrial tachycardia originating from the mitral valve annulus. Europace. 2006;8:977–9.

    Article  PubMed  Google Scholar 

  20. Hoffmann BF, de Paes Carvalho A, de Mello WC. Trans-membrane potentials of single fibers of the atrioventricular junction. Nature. 1958;181:66–7.

    Article  Google Scholar 

  21. Meijler FL, Janse MJ. Morphology and electrophysiology of the mammalian atrioventricular junction. Physiol Rev. 1988;68:608–47.

    CAS  PubMed  Google Scholar 

  22. Munk AA, Adjemian RA, Zhao J, Ogbaghebriel A, Shrier A. Electrophysiological properties of morphologically distinct cells isolated from the rabbit atrio-ventricular junction. J Physiol. 1996;493:801–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Sano T, Tasaki M, Shimamoto T. Histological examination of the origin of the action potential characteristically obtained from the region bordering the atrioventricular junction. Circ Res. 1958;7:700–4.

    Article  Google Scholar 

  24. Bharati S. Anatomic-morphologic relations between AV nodal structure and function in the normal and diseased heart. In: Mazgalev TN, Tchou PJ, editors. Atrial-AV nodal electrophysiology: a view from the millennium. Armonk: Futura; 2000.

    Google Scholar 

  25. de Paes Carvalho A, de Mello WC, Hoffman BF, editors. The specialized tissues of the heart. Amsterdam: Elsevier; 1961.

    Google Scholar 

  26. de Paes Carvalho A, de Almeida DF. Spread of activity through the atrioventricular node. Circ Res. 1960;8:801–9.

    Article  Google Scholar 

  27. Watanabe Y, Dreifus LS. Site of impulse formation within the atrioventricular junction using optical coherence tomography. Circ Res. 1968;22:717–27.

    Article  CAS  PubMed  Google Scholar 

  28. Hoffman BF, Cranefield PF. Electrophysiology of the heart. New York: McGraw-Hill Book Co Inc; 1960.

    Google Scholar 

  29. Billette J. Atrioventricular nodal activation during periodic premature stimulation of the atrium. Am J Physiol. 1987;252:H163–77.

    CAS  PubMed  Google Scholar 

  30. Medkour D, Becker AE, Khalife K, Billette J. Anatomic and functional characteristics of a slow posterior AV nodal pathway: role in dual-pathway physiology and reentry. Circulation. 1998;98:164–74.

    Article  CAS  PubMed  Google Scholar 

  31. Nikolski V, Efimov I. Fluorescent imaging of a dual-pathway atrioventricular-nodal conduction system. Circ Res. 2001;88:E23–30.

    Article  CAS  PubMed  Google Scholar 

  32. Petrecca K, Amellal F, Laird DW, Cohen SA, Shrier A. Sodium channel distribution within the rabbit atrio-ventricular junction as analyzed by confocal microscopy. J Physiol. 1997;501:263–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Noma A, Irisawa H, Kokubun S, Hotake H, Nishimura M, Watanabe Y. Slow current systems in the A-V junction of the rabbit heart. Nature. 1980;285:228–9.

    Article  CAS  PubMed  Google Scholar 

  34. Hancox JC, Levi AJ, Lee CO, Heap PA. A method for isolating rabbit atrioventricular junction myocytes which retain normal morphology and function. Am J Physiol. 1993;265:H755–66.

    CAS  PubMed  Google Scholar 

  35. Kokubun S, Nishimura M, Noma A, Irisawa H. The spontaneous action potential of rabbit atrioventricular junction cells. Jpn J Physiol. 1980;30:529–40.

    Article  CAS  PubMed  Google Scholar 

  36. Taniguchi J, Kokubun S, Noma A, Irisawa H. Spontaneously active cells isolated from the sino-atrial and atrio-ventricular junctions of rabbit heart. Jpn J Physiol. 1981;31:547–58.

    Article  CAS  PubMed  Google Scholar 

  37. Kokubun S, Nishimura M, Noma A, Irisawa H. Membrane currents in the rabbit atrio-ventricular junction cell. Pflugers Arch. 1982;393:15–22.

    Article  CAS  PubMed  Google Scholar 

  38. Dobrzynski H, Nikolski VP, Sambelashvili AT, Greener ID, Yamamoto M, Boyett MR, et al. Site of origin and molecular substrate of atrioventricular junctional rhythm in the rabbit heart. Circ Res. 2003;93:1102–10.

    Article  CAS  PubMed  Google Scholar 

  39. Noma A, Nakyana T, Kurachi Y, Irisawa H. Resting K conductance in pacemaker and non-pacemaker cells of the rabbit. Jpn J Physiol. 1984;34:245–54.

    Article  CAS  PubMed  Google Scholar 

  40. Yoo S, Dobrzynski H, Fedrov VV, Xu SZ, Yamanushi TT, Jones SA, et al. Localization of Na+ channel isoform at the atrioventricular junction and atrioventricular junction in the rat. Circulation. 2006;14:1360–71.

    Article  Google Scholar 

  41. Efimov IR, Nikolski VP, Rothenberg F, Greener ID, Li J, Dobrzynski H, et al. Structure-function relationship in the A-V junction. Ant Rec A Discov Mol Cell Evol Biol. 2004;280:952–65.

    Article  Google Scholar 

  42. Mangoni ME, Traboulsie A, Leoni A-L, Couette B, Marger L, Quang KL, et al. Bradycardia and slowing the atrioventricular conduction in mice lacking CaV3.1./α1G T-type calcium channels. Circ Res. 2006;98:1422–30.

    Article  CAS  PubMed  Google Scholar 

  43. Gros DB, Jongsma HJ. Connexins in mammalian heart function. Bioessays. 1996;18:719–30.

    Article  CAS  PubMed  Google Scholar 

  44. Spray DC, Suadicani SO, Vink MJ, Srinivas M. Gap junction channels and healing-over of injury. In: Sperelakis N, Kurachi Y, Terzic A, Cohen MV, editors. Heart physiology and pathophysiology. New York: Academic; 2000. p. 149–74.

    Google Scholar 

  45. Kreuzberg MM, Sohl G, Kim J-S, Verselis VK, Willecke K, Bukauskas FF. Functional properties of mouse connexin 30.2 expressed in the conduction system of the heart. Circ Res. 2005;96:1169–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Langendorf R. Concealed A-V conduction: the effect of blocked impulses on the formation and conduction of subsequent impulses. Am Heart J. 1948;35:542.

    Article  CAS  PubMed  Google Scholar 

  47. Yamada K, Okajima M, Hori K, Fujino T, Muraki H, Hishida H, et al. On the genesis of the absolute ventricular arrhythmia associated with atrial fibrillation. Circ Res. 1968;12:707–15.

    Article  Google Scholar 

  48. Moe G, Preston JB, Burlington H. Physiological evidence for a dual A-V transmission system. Circ Res. 1956;4:357–75.

    Article  CAS  PubMed  Google Scholar 

  49. Mendenz C, Moe G. Demonstration of a dual A-V nodal conduction system in the isolated rabbit heart. Circ Res. 1966;19:378–93.

    Article  Google Scholar 

  50. Denes P, Wu D, Dhinga R, Amat-y-Leon F, Wyndham C, Rosen KM. Dual atrioventricular nodal pathways: a common electrophysiologic response. Br Heart J. 1975;37:1069–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Watanabe Y, Dreifus LS. Inhomogeneous conduction in the A-V junction: a model for reentry. Am Heart J. 1965;70:505–14.

    Article  CAS  PubMed  Google Scholar 

  52. Janse MJ, van Capelle FJL, Freud GE, Durrer D. Circus movement within the AV junction as a basis for supraventricular tachycardia as shown by multiple microelectrode recording in the isolated rabbit heart. Circ Res. 1971;28:403–14.

    Article  CAS  PubMed  Google Scholar 

  53. Mines GR. On dynamic equilibrium in the heart. J Physiol. 1913;46:349–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Coumel P, Carbol C, Fabiato A, Gourgon R, Slama R. Tachycardie Permanente Par Rhthme Reciproque. Arch Mal Coeur Vaiss. 1967;60:1830–64.

    Google Scholar 

  55. Heidbuchel H, Jackman WM. Characterization of sub-forms of AV nodal reentrant tachycardia. Europace. 2004;6:316–29.

    Article  PubMed  Google Scholar 

  56. Cox JL, Ferguson Jr TB, Lindsay BD, Cain ME. Perinodal surgery for AV nodal reentrant tachycardia in 23 patients. J Thoracic Cardiovasc Surg. 1990;99:440–50.

    CAS  Google Scholar 

  57. Wu JW, Olgin J, Miller JM, Zipes DP. Mechanisms underlying the reentrant circuit of atrioventricular nodal reentrant tachycardia in isolated canine atrioventricular nodal reparation using optical mapping. Circ Res. 2001;88:1180–95.

    Google Scholar 

  58. Zipes DP, Mendez C. Action of manganese ions and tetrodotoxin on atrioventricular nodal transmembrane potentials in isolated rabbit hearts. Circ Res. 1973;32:447–54.

    Article  CAS  PubMed  Google Scholar 

  59. Nikolski VP, Jones SA, Lancaster MK, Boyett MR, Efimov IR. Cx43 and dual-pathway electrophysiology of the atrioventricular node and atrioventricular nodal reentry. Circ Res. 2003;92:469–75.

    Article  CAS  PubMed  Google Scholar 

  60. Kwong KF, Schuessler RB, Green KG, Laing JG, Beyer EC, Boineau JP, et al. Differential expression of gap junction proteins in the canine sinus node. Circ Res. 1998;82:604–12.

    Article  CAS  PubMed  Google Scholar 

  61. Joyner RW, van Capelle FJ. Propagation through electrically coupled cells: how a small SA node drives a large atrium. Biophys J. 1986;50:1157–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Coppen SR, Kodama I, Boyett MR, Dobrzynski H, Takagishi Y, Honjo H, et al. Connexin 45, a major connexin of the rabbit sinoatrial node, is co-expressed with connexin 43 in a restricted zone at the nodal-crista terminalis border. J Histochem Cytochem. 1999;47:907–18.

    Article  CAS  PubMed  Google Scholar 

  63. Scherf D, Cohen J, editors. The atrioventricular node and selected cardiac arrhythmias. New York: Grune & Stratton; 1964.

    Google Scholar 

  64. Spitzer KW, Sato N, Tanaka H, Firek L, Zani-boni M, Giles WR. Electrotonic modulation of electrical activity in rabbit atrioventricular node myocytes. Am J Physiol. 1997;273:H767–76.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidekazu Miyazaki MD, PhD, CCDS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Miyazaki, H. (2014). Anatomy and Physiology of the Atrioventricular Node: What Do We Know Today?. In: Kibos, A., Knight, B., Essebag, V., Fishberger, S., Slevin, M., Țintoiu, I. (eds) Cardiac Arrhythmias. Springer, London. https://doi.org/10.1007/978-1-4471-5316-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5316-0_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5315-3

  • Online ISBN: 978-1-4471-5316-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics