Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

This chapter is dedicated to space applications. Three application cases will be presented: an Earth observation satellite, a deep space mission and an atmospheric re-entry vehicle. The design method is based on H /H tools and is associated with a suitable post-analysis process, the so-called generalized μ-analysis. It is shown that the resulting design/analysis procedure provides an iterative refinement cycle which allows the designer to get “as close as possible” to the required robustness/performance specifications and trade-offs. This chapter is dedicated to actuator fault detection and diagnosis in space applications. Fault tolerance in terms of control and guidance will also be discussed. The design method is based on H /H and robust pole assignment tools. Three space applications will be studied:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This case study is taken from a collaborative project supported by the French Space Agency (CNES).

  2. 2.

    The Mars Sample Return (MSR) mission is taken from a European project supported by the European Space Agency and Thales Alenia Space (France).

  3. 3.

    HL-20 vehicle: This study is taken from a collaborative project (SICVER project, see Chap. 1) with European Space Agency and EADS Astrium Space Transportation (France).

  4. 4.

    http://www.sti.nasa.gov/

  5. 5.

    MICROSCOPE is the French acronym of MICRO-Satellite à traînée Compensée pour l’Observation du Principe d’Equivalence.

  6. 6.

    The MICROSCOPE project Steering Committee has authorized the project to start a new preliminary conception phase (phase B) with cold gas micro-thrusters instead of FEEPs.

  7. 7.

    The complete database of the aerodynamic coefficients is available at http://ntrs.nasa.gov

Abbreviations

ACC:

ACCelerometer

AOCS:

Attitude and Orbit Control System

CSS:

Coarse Sun Sensor

FEEP:

Field Emission Electric Propulsion

GNSS:

Global Navigation Satellite System

GYR:

GYRoscope

IMU:

Inertial Measurement Unit

LFR:

Linear Fractional Representation

LIDAR:

LIght Detection And Ranging

LMI:

Linear Matrix Inequality

MAV:

Mars Ascent Vehicle

MDV:

Mars Descent Vehicle

MSR:

Mars Sample Return

NAC:

Narrow Acquisition Camera

NAV:

NAVigation

NEP:

Nominal Exit Point

PID:

Proportional Integral Derivative

RFS:

Radio Frequency Sensor

RLV:

Reentry Launch Vehicle

RW:

Reaction Wheel

SAM:

Sun Acquisition Mode

SDP:

Semi-Definite Programming

STR:

Star TRacker

TAEM:

Terminal Area Energy Management

TEP:

TAEM Exit Point

THR:

THuRster

TM:

Telemetry

References

  1. Bornschleg E (2008) Fdir requirements and rational – esa r&d activities overview for gnc and software. In: CCT CNES, Toulouse, France

    Google Scholar 

  2. Olive X (2010) Fdi(r) for satellite at thales alenia space: how to deal with high availability and robustness in space domain? In: Conference on control and fault-tolerant systems (SysTol’10). IEEE, Nice, France, pp 837–842

    Google Scholar 

  3. Henry D, Simani S, Patton R (2010) Fault detection and diagnosis for aeronautic and aerospace missions in ‘fault tolerant flight control: a benchmark challenge’. Springer, Berlin

    Google Scholar 

  4. Satin A, Gates R (2005) Evaluation of parity equations for gyro failure detection and isolation. J Guid Control 1(1):14–20

    Article  Google Scholar 

  5. Shim DS, Yang CK (2004) Geometric FDI based on SVD for redundant inertial sensor systems. In: 2004 5th Asian control conference, IEEE, vol. 2, Melbourne, Victoria, Australia, pp 1094–1100

    Google Scholar 

  6. Yang C-K, Shim D-S (2007) Double faults isolation based on the reduced-order parity vectors in redundant sensor configuration. Int J Control Autom Syst 5(2):155–160

    Google Scholar 

  7. Verma V, Langford J, Simmons R (2001) Non-parametric fault identification for space rovers. In: International Symposium on Artificial Intelligence and Robotics in Space (iSAIRAS). J.-C. Piedboeuf, June 2001

    Google Scholar 

  8. DeFreitas N (2002) Rao-blackwellised particle filtering for fault diagnosis. In: Aerospace conference, IEEE, vol. 4, pp 1767–1772

    Google Scholar 

  9. Hutter F, Dearden R (2003) Efficient on-line fault diagnosis for non-linear systems. In: International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), Nara, Japan, 19–23 May 2003

    Google Scholar 

  10. Venkateswaran N, Siva M, Goel P (2002) Analytical redundancy based fault detection of gyroscopes in spacecraft applications. ACTA Astron 50(9):535–545

    Article  Google Scholar 

  11. Jensen H, Wisniewski R (2002) Fault detection and isolation for spacecraft: geo- metric approach. In: Guidance navigation and control. AIAA, Monterey, CA, 5–8 Aug 2002

    Google Scholar 

  12. Edwards C, Spurgeon S, Patton R (2000) Sliding mode observers for fault detection and isolation. Automatica 36:541–553

    Article  MathSciNet  MATH  Google Scholar 

  13. Tan C, Edwards C (2003) Sliding mode observers for robust detection and re- construction of actuator and sensor faults. Int J Robust Nonlinear Control 13:443–446

    Article  MathSciNet  MATH  Google Scholar 

  14. Edwards C, Thein M (2006) Sliding mode fault detection and isolation in a satellite leader/follower system. In: Proceedings of SAFEPROCESS’2006. IFAC, Beijing, China, pp 367–372

    Google Scholar 

  15. Patton R, Uppal F, Simani S, Polle B (2006) A monte carlo analysis and design for fdi of a satellite attitude control system. In: Proceedings of SAFEPROCESS’2006. IFAC, Beijing, China, pp 1393–1398

    Google Scholar 

  16. Dearden R, Clancy D (2002) Particle filters for real-time fault detection in planetary rovers. In: Proceedings of the thirteenth international workshop on principles of diagnosis, pp 1–6

    Google Scholar 

  17. Dearden R, Willeke T, Simmons R, Verma V, Hutter F, Thrun S (2004) Real- time fault detection and situational awareness for rovers: report on the mars technology program task. In: Aerospace, IEEE, 6–13 Mar 2004, pp 826–840

    Google Scholar 

  18. Patton R, Uppal F, Simani S, Polle B (2008) Reliable fault diagnosis scheme for a spacecraft attitude control system. Proc IMechE Part 0: J Risk Reliab 222:139–152

    Google Scholar 

  19. Patton R, Uppal F, Simani S, Polle B (2010) Robust fdi applied to thruster faults of a satellite system. Control Eng Pract 18(9):1093–1109

    Article  Google Scholar 

  20. Alwi CEH, Marcos A (2010) Fdi for a mars orbiting satellite based on a sliding mode observer scheme. In: Conference on control and fault-tolerant systems (SysTol). IEEE, Nice, France, pp 125–130

    Google Scholar 

  21. Castro H, Bennani S, Marcos A (2006) Robust filter design for a re-entry vehicle. In: Proceedings of the 7th international conference on dynamics and control of systems and structures in space, Greenwish, UK

    Google Scholar 

  22. Murray K, Marcos A, Nin LP, Bornschlegl E (2008) Gain scheduled fdi for a re-entry vehicle. In: AIAA guidance, navigation and control conference and exhibit. AIAA, Honolulu, Hawaii

    Google Scholar 

  23. Falcoz A, Henry D, Zolghadri A, Bornschleg E, Ganet M (2008) On-board model-based robust fdir strategy for reusable launch vehicles (rlv). In: 7th international ESA conference on guidance, navigation and control systems, County Kerry, Ireland

    Google Scholar 

  24. Falcoz A, Henry D, Zolghadri A (2010) Robust fault diagnosis for atmospheric re-entry vehicles: a case study. IEEE Trans Syst Man Cybern – Part A: Syst Hum 40(5):886–899

    Article  Google Scholar 

  25. Falcoz A, Boquet F, Dinh M, Polle B, Flandin G, Bornschlegl E (2010) Robust fault diagnosis for spacecraft: application to lisa pathfinder experiment. In: Conference on control and fault-tolerant systems (ACA’2010). IFAC, Nara, Japan

    Google Scholar 

  26. Falcoz A, Boquet F, Flandin G (2010) Robust h/h thruster failure detection and isolation with application to the lisa pathfinder spacecraft. In: AIAA guidance, navigation, and control conference, AIAA, Toronto, Ontario

    Google Scholar 

  27. Henry D, Zolghadri A (2005) Design and analysis of robust residual generators for systems under feedback control. Automatica 41:251–264

    Article  MathSciNet  MATH  Google Scholar 

  28. Henry D, Zolghadri A (2005) Design of fault diagnosis filters: a multi-objective approach. J Franklin Inst 342(4):421–446

    Article  MathSciNet  MATH  Google Scholar 

  29. Henry D, Zolghadri A, Monsion M, Ygorra S (2002) Off-line robust fault diagnosis using the generalised structured singular value. Automatica 38(8):1347–1358

    Article  MathSciNet  MATH  Google Scholar 

  30. Patton R, Frank P, Clark R (2000) Issues of fault diagnosis for dynamic systems. Springer, London. ISBN 3-540-19968-3

    Book  Google Scholar 

  31. Chen J, Patton R (1999) Robust model-based fault diagnosis for dynamic systems. Kluwer Academic, Boston

    Book  MATH  Google Scholar 

  32. Beck C, Doyle J, Glover K (1996) Model reduction of multidimensional and uncertain systems. IEEE Trans Autom Control 41(10):1466–1477

    Article  MathSciNet  MATH  Google Scholar 

  33. Cockburn J, Morton B (1997) Linear fractional representations of uncertain systems. Automatica 33(7):1263–1271

    Article  MathSciNet  MATH  Google Scholar 

  34. Varga A, Looye G, Moormann D, Grübel G (1998) Automated generation of LFT-based parametric uncertainty descriptions from generic aircraft models. Math Model Dyn Syst 4:249–274

    Article  MATH  Google Scholar 

  35. Beck C, Doyle J (1999) A necessary and sufficient minimality condition for uncertain systems. IEEE Trans Autom Control 44(10):1802–1813

    Article  MathSciNet  MATH  Google Scholar 

  36. Hecker S, Varga A, Magni J (2005) Enhanced LFR-toolbox for matlab. Aerosp Sci Technol 9:173–180

    Article  MATH  Google Scholar 

  37. Wied B (1998) Space vehicle dynamics and control. American Institute of Aeronautics and Astronautics, Reston

    Google Scholar 

  38. Wisniewski R (2000) Lecture notes on modelling of a spacecraft. Aalborg Universitet, Aldeling for Proceskontrol, Aalborg

    Google Scholar 

  39. Jin H, Wiktor P, DeBra D (1995) An optimal thruster configuration design and evaluation for quick step. Control Eng Pract 3(8):1113–1118

    Article  Google Scholar 

  40. Wiktor P (1996) On-orbit thruster calibration. J Guid Control Dyn 19(4):934–940

    Article  MATH  Google Scholar 

  41. Henry D (2008) Fault diagnosis of the MICROSCOPE satellite actuators using H/H filters. AIAA J Guid Control Dyn 31(3):699–711

    Article  Google Scholar 

  42. Isermann R (2005) Model-based fault detection and diagnosis – status and applications. Annu Rev Control 29:71–85

    Article  Google Scholar 

  43. Zolghadri A, Goetz C, Bergeon B, Denoize X (1998) Integrity monitoring of flight parameters using analytical redundancy. In: IEEE international conference on Control’98, Swansea, UK

    Google Scholar 

  44. Das I, Dennis J (1997) A closer look at drawbacks of minimizing weighted sums of objective for pareto set generation in multicriteria optimization problems. Struct Optim 14(1):63–69

    Article  Google Scholar 

  45. Henry D, Zolghadri A (2006) Norm-based design of robust fdi schemes for uncertain systems under feedback control: comparison of two approaches. Control Eng Pract 14(9):1081–1097

    Article  Google Scholar 

  46. Gahinet P, Apkarian P (1994) A linear matrix inequality approach to H control. Int J Robust Nonlinear Control 4:421–428

    Article  MathSciNet  MATH  Google Scholar 

  47. CNES (1998) Cours de technologie spatiale, Techniques et Technologies des ve´ hicules spatiaux, vol 1,2,3. CEPADUES-ED

    Google Scholar 

  48. Wertz JR, Larson WJ (1999) Space mission analysis and design, 3rd edn. Springer, New York

    Google Scholar 

  49. Irvin DJ (2001) A study of linear vs. nonlinear control techniques for the reconfiguration of satellite formations. PhD thesis, Department of Aeronautics and Astronautics – Graduate School of Engineering and Management – Air Force Institute of Technology – Air University – Air Education and Training Command, Wright-Patterson Air Force Base, Ohio

    Google Scholar 

  50. Zames G (1966) On the input-output stability of time varying nonlinear feedback systems. In: IEEE transactions on automatic control, Cambridge, MA, pp 228–238, 465, 467

    Google Scholar 

  51. Scherer C, Gahinet P, Chilali M (1997) Multiobjective output-feedback control via LMI optimization. IEEE Trans Autom Control 42(7):896–911

    Article  MathSciNet  MATH  Google Scholar 

  52. Chilali M, Gahinet P, Apkarian P (1999) Robust pole placement in LMI regions. IEEE Trans Autom Control 44(12):2257–2270

    Article  MathSciNet  MATH  Google Scholar 

  53. der Linden CV (1996) DASMAT-Delft University aircraft simulation model and analysis tool. Faculty of Aerospace Engineering, Delft University of Technology, Rept. LR- 781, Delft, The Netherlands

    Google Scholar 

  54. Falcoz A, Henry D, Zolghadri A (2008) A nonlinear fault identification scheme for reusable launch vehicles control surfaces. Int Rev Aerosp Eng 1(5):447–457

    Google Scholar 

  55. Fan M, Tits A, Doyle J (1991) Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. IEEE Trans Autom Control 36(1):25–38

    Article  MathSciNet  MATH  Google Scholar 

  56. Packard A, Doyle J (1993) The complex structured singular value. Automatica 29(1):71–109

    Article  MathSciNet  MATH  Google Scholar 

  57. Newlin M, Smith R (1998) A generalization of the structured singular value and its application to model validation. IEEE Trans Autom Control 43:901–907

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Zolghadri, A., Henry, D., Cieslak, J., Efimov, D., Goupil, P. (2014). Model-Based FDIR for Space Applications. In: Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace Vehicles. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-5313-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5313-9_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5312-2

  • Online ISBN: 978-1-4471-5313-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics