Appendix D: Elements of Bayesian Statistics

  • Florian FrommletEmail author
  • Małgorzata Bogdan
  • David Ramsey
Part of the Computational Biology book series (COBO, volume 18)


The data from individual genetic experiments are rather noisy. Also, their large dimension requires the application of rather strict multiple testing corrections to reduce the number of false discoveries. This results in a relatively low power to detect important signals.


Posterior Distribution Prior Distribution Conditional Distribution Gibbs Sampler Markov Chain Monte Carlo Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Berger, J.O.: Statistical Decision Theory and Bayesian Analysis, 2nd edn. Springer, New York (1993)Google Scholar
  2. 2.
    Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. Chapman and Hall, London (1995)Google Scholar
  3. 3.
    Ghosh, J.K., Delampady, M., Samanta, T.: An Introduction to Bayesian Analysis—Theory and Methods. Springer, New York (2006)zbMATHGoogle Scholar
  4. 4.
    Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice. Chapman and Hall/CRC (1996)Google Scholar
  5. 5.
    Bolstad, W.M.: Understanding Computational Bayesian Statistics. John Wiley and Sons (2010)Google Scholar
  6. 6.
  7. 7.
    Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell 6, 721–741 (1984)CrossRefzbMATHGoogle Scholar
  8. 8.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N.,Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21(6): 1087–1092 (1953)Google Scholar
  9. 9.
    Hastings, W.K.: Monte Carlo Sampling methods using Markov chains and their applications. Biometrika 571): 97–109 (1970)Google Scholar
  10. 10.
    Mengersen, K.L., Tweedie, R.L.: Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist. 24(1), 101–121 (1996)Google Scholar
  11. 11.
    Cowles, M.K., Carlin, B.P.: Markov chain Monte Carlo convergence diagnostics: a comparative review. J. Amer. Statist. Assoc. 91(434), 883–904 (1996)Google Scholar
  12. 12.
    Casella, G.: An introduction to empirical Bayes data analysis. Am. Stat. 39(2): 83–87 (1985)Google Scholar
  13. 13.
    Devroye, L., Gyorfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer, New York (1996)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Florian Frommlet
    • 1
    Email author
  • Małgorzata Bogdan
    • 2
  • David Ramsey
    • 3
  1. 1.Center for Medical Statistics, Informatics, and Intelligent Systems Section for Medical StatisticsMedical University of ViennaViennaAustria
  2. 2.Institute of MathematicsUniversity of WrocławWrocławPoland
  3. 3.Department of Operations ResearchWrocław University of TechnologyWrocławPoland

Personalised recommendations