Skip to main content

Rapid Compression Machines

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

A rapid compression machine is a type of ideal internal combustion reactor which is well suited for gas phase kinetics studies and physical processes of combustion. These studies consist in recording the evolution of the reactivity and of the composition of the reacting mixtures as a function of temperature, pressure, residence time and the composition of the compressed mixture. Pressure measurement is used to analyse the evolution of the combustion process, but more recent studies couple pressure measurement with optical diagnostics in order to assess the homogeneity of the combustion process. Speciation based on rapid sampling of the intermediates formed, during the oxidation of the fuel, is typically carried out by gas chromatography.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Beeley P, Gray P, Griffiths JF (1979) Shock sensitivity of liquid propellants: the exothermic decomposition of isopropyl nitrate under rapid compression. Proc Combust Inst 17:1415–1423

    Google Scholar 

  • Brett L, MacNamara J, Musch P et al (2001) Simulation of methane autoignition in a rapid compression machine with creviced pistons. Combust Flame 124:326–329

    Article  Google Scholar 

  • Bysveen M, Almas T (2003) Fuel quality evaluation by changing the compression ratio in a hydraulic dynamic combustion rig. SAE Technical Paper 2003-01-3081

    Google Scholar 

  • Carlier M, Corre C, Minetti R et al (1990) Autoignition of butane: a burner and a rapid compression machine study. Proc Combust Inst 23:1753–1758

    Google Scholar 

  • Clarkson J, Griffiths JF, MacNamara JP et al (2001) Temperature fields during the development of combustion in a rapid compression machine. Combust Flame 125:1162–1175

    Article  Google Scholar 

  • Crochet M, Minetti R, Ribaucour M et al (2010) A detailed experimental study of n-propylcyclohexane autoignition in lean conditions. Combust Flame 157:2078–2085

    Article  Google Scholar 

  • Donovan MT, He X, Zigler BT et al (2004) Demonstration of a free-piston rapid compression facility for the study of high temperature combustion phenomena. Combust Flame 137:351–365

    Article  Google Scholar 

  • Falk KG (1906) The ignition temperatures of hydrogen-oxygen mixtures. J Am Chem Soc 28(11):1517–1534

    Article  Google Scholar 

  • Gallagher SM, Curran HJ, Metcalfe WK et al (2008) A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime. Combust Flame 153:316–333

    Article  Google Scholar 

  • Griffiths JF, Piazzesi R, Sazhina EM et al (2012) CFD modeling of cyclohexane auto-ignition in RCM. Fuel 96:192–203

    Article  Google Scholar 

  • Guibert P, Kéromnès A, Legros G (2007) Development of a turbulence controlled rapid compression machine for HCCI combustion. SAE Technical Paper 2007-01-1869

    Google Scholar 

  • Guibert P, Kéromnès A, Legros G (2010) An experimental investigation of the turbulence effect on the combustion propagation in a rapid compression machine. Flow Turbul Combust 84(1):79–95

    Article  MATH  Google Scholar 

  • Gupta S, Bihari B, Sekar R et al (2005) Ignition characteristics of methane-air mixtures at elevated temperatures and pressures. SAE Technical Paper 2005-01-2189

    Google Scholar 

  • Husson B, Bounaceur R, Tanaka K et al (2012) Experimental and modeling study of the oxidation of n-butylbenzene. Combust Flame 159:1399–1416

    Article  Google Scholar 

  • Jakirlić S, Volkert J, Pascal H et al (2000) DNS, experimental and modelling study of axially compressed in-cylinder swirling flow. Int J Heat Fluid Flow 21:627–639

    Article  Google Scholar 

  • Kono M, Shiga S, Kumagai S et al (1983) Thermodynamic and experimental determinations of knock intensity by using a spark-ignited rapid compression machine. Combust Flame 54:33–47

    Article  Google Scholar 

  • Lee D, Hochgreb S (1998) Rapid compression machines: heat transfer and suppression of corner vortex. Combust Flame 114:531–545

    Article  Google Scholar 

  • Lim OT, Sendoh N, Iida N (2004) Experimental study on HCCI combustion characteristics of n-heptane and iso-octane fuel/air mixture by the use of a rapid compression machine. SAE Technical Paper 2004-01-1968

    Google Scholar 

  • Lodier G, Merlin C, Domingo P et al (2012) Self-ignition scenarios after rapid compression of a turbulent mixture weakly-stratified in temperature. Combust Flame 159:3358–3371

    Article  Google Scholar 

  • Minetti R, Ribaucour M, Carlier M et al (1994) Experimental and modelling study of oxidation and Autoignition of butane at high pressure. Combust Flame 96:201–211

    Article  Google Scholar 

  • Mittal G, Gupta S (2012) Computational assessment of an approach for implementing crevice containment in rapid compression machines. Fuel 102:536–544

    Article  Google Scholar 

  • Mittal G, Sung CJ (2006) Aerodynamics inside a rapid compression machine. Combust Flame 145:160–180

    Article  Google Scholar 

  • Mittal G, Raju MP, Sung C (2008) Computational fluid dynamics modeling of hydrogen ignition in a rapid compression machine. Combust Flame 155:417–428

    Article  Google Scholar 

  • Mittal G, Raju MP, Sung C (2010) CFD modeling of two-stage ignition in a rapid compression machine: Assessment of zero-dimensional approach. Combust Flame 157:1316–1324

    Article  Google Scholar 

  • Ribaucour M, Minetti R, Carlier M et al (1992) Autoinflammation à haute pression. Conception, réalisation et test d’une machine à compression rapide. J Chim Phys 89:2127–2152

    Google Scholar 

  • Strozzi C, Sotton J, Bellenoue M et al (2007) Self-ignition of a lean methane-air mixture at high pressure in a Rapid Compression Machine. In: Proceedings of the European Combustion Meeting, Chania, Greece, vol 3

    Google Scholar 

  • Strozzi C, Sotton J, Mura A et al (2008) Experimental and numerical study of the influence of temperature heterogeneities on self-ignition process of methane-air mixtures in a rapid compression machine. Combust Sci Technol 180:1829–1857

    Article  Google Scholar 

  • Strozzi C, Sotton J, Mura A et al (2009) Characterization of a two-dimensional temperature field within a rapid compression machine using a toluene planar laser-induced fluorescence imaging technique. Meas Sci Technol 20:125403

    Article  Google Scholar 

  • Strozzi C, Mura A, Sotton J et al (2012) Experimental analysis of propagation regimes during the autoignition of a fully premixed methane–air mixture in the presence of temperature inhomogeneities. Combust Flame 159:3323–3341

    Article  Google Scholar 

  • Tanaka S, Ayala F, Keck JC (2003) A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine. Combust Flame 133:467–481

    Article  Google Scholar 

  • Tran K, Morin C, Guibert P (2011) Anisole laser induced fluorescence (LIF) for imaging local heterogeneities in temperature in a rapid combustion machine. In: Proceedings of the European Combustion Meeting, Cardiff, Wales, vol 4

    Google Scholar 

  • Walton SM, He X, Zigler BT et al (2007) An experimental investigation of iso-octane ignition phenomena. Combust Flame 150:246–262

    Article  Google Scholar 

  • Würmel J, Simmie JM (2005) CFD studies of a twin-piston rapid compression machine. Combust Flame 141:417–430

    Article  Google Scholar 

  • Würmel J, Silke EJ, Curran HJ et al (2007a) The effect of diluent gases on ignition delay times in the shock tube and in the rapid compression machine. Combust Flame 151:289–302

    Article  Google Scholar 

  • Würmel J, Simmie JM, Curran HJ (2007b) Studying the chemistry of HCCI in rapid compression machines Int J Vehicle Design 44:84–106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Kéromnès .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Kéromnès, A. (2013). Rapid Compression Machines. In: Battin-Leclerc, F., Simmie, J., Blurock, E. (eds) Cleaner Combustion. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5307-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5307-8_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5306-1

  • Online ISBN: 978-1-4471-5307-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics