Skip to main content

Statistical Rate Theory in Combustion: An Operational Approach

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Statistical rate theory is a valuable tool to rationalize the microscopic mechanisms of elementary chemical steps in the gas phase, to analyze results of kinetic experiments, and to adequately parameterize the temperature and pressure dependence of rate coefficients. We briefly describe the essential elements of statistical rate theory that are relevant for the kinetic characterization of reactions under combustion conditions, emphasizing application aspects. The calculation of rate coefficients for reactions over potential energy barriers and potential energy wells is elucidated. In the former case conventional transition state theory is used, in the latter case the temperature and pressure dependence is described by means of master equations with specific rate coefficients from RRKM theory and the simplified statistical adiabatic channel model. Examples for the different types of reaction are given, and crucial quantities are discussed. The article primarily aims at readers on an intermediate level between graduate students and junior scientists, who are interested in performing practical calculations, and who are looking for a compact presentation of the topic as a guide to the extensive literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

<X>:

Average of quantity X

A :

Vector/matrix containing elements a(E i )/a(E i , E j )

B :

Rotational constant

B cent(q):

Rotational constant for centrifugal motion in SACM

D :

Morse parameter

E i :

ith eigenvector of the matrix J

ΔE SL :

Energy transfer parameter of the stepladder model

E>:

Average energy transferred per collision (all, up and down)

E>d :

Average energy transferred per down collision

E>u :

Average energy transferred per up collision

ΔE z :

Zero-point energy correction in SACM

E 0(i) :

Threshold energy of reaction i

f(E):

Initial distribution of the intermediate in a complex-forming bimolecular reaction

F AM :

Angular momentum coupling factor in SACM

F E :

Density of states correction factor

h :

Planck′s constant

HO:

Harmonic oscillator

J :

Total angular momentum quantum number

J :

Matrix of the master equation, for definition see Eq. 21.3

k i :

Rate coefficient of reaction i

k i :

High-pressure limiting value of the rate coefficient for reaction i

k B :

Boltzmann′s constant

L i :

Reaction path degeneracy for reaction i

n(E):

Distribution of a reacting species

n s(E):

Steady-state distribution of a reacting species

ñ s(E):

Normalized steady-state distribution of a reacting species

P :

Pressure

P(E′,E) :

Collisional transition probability (density) for a collision EE

PST:

Phase space theory

q :

Reaction coordinate/interfragment distance

q e :

Equilibrium distance

q*HIR :

Partition function for hindered internal rotor (local coordinate)

q HO :

Partition function for harmonic oscillator (normal coordinate)

q*HO :

Partition function for harmonic oscillator (local coordinate)

Q :

Partition function

R :

Gas constant

R 1 :

Rate of reaction of a complex-forming bimolecular reaction

RRKM:

Rice, Ramsperger, Kassel, Marcus

SACM:

Statistical adiabatic channel model

T :

Temperature

TST:

Transition state theory

V :

Volume

V(q):

Classical interfragment potential

W i :

Cumulative reaction probability/sum of states for reaction/transition state i

α :

Interpolation parameter of simplified SACM or energy transfer parameter of the exponential down model

β :

Morse parameter

γ c :

Collision efficiency in a chemically activated reaction

ε(q):

Vibrational or rotational quantum in SACM

λ i :

ith eigenvalue of the matrix J

ρ :

Density of states

σ :

Symmetry number

ω :

Collision frequency (unit: s−1)

References

  • Allen JW, Goldsmith CF, Green WH (2012) Automatic estimation of pressure-dependent rate coefficients. Phys Chem Chem Phys 14:1131–1155

    Article  Google Scholar 

  • Astholz DC, Troe J, Wieters W (1979) Unimolecular processes in vibrationally highly excited cycloheptatrienes. I. Thermal isomerization in shock waves. J Chem Phys 70:5107–5116

    Article  Google Scholar 

  • Atkins PW (1983) Molecular Quantum Mechanics, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Barker JR (2001) Multiple-well, multiple-path unimolecular reaction systems. I. MultiWell computer program suite. Int J Chem Kinet 33:232–245

    Article  Google Scholar 

  • Barker JR, Ortiz NF (2001) Multiple-well, multiple-path unimolecular reaction systems. I. MultiWell computer program suite. Int J Chem Kinet 33:246–261

    Article  Google Scholar 

  • Baer T, Hase WL (1996) Unimolecular reaction dynamics: theory and experiments. Oxford University Press, Oxford

    Google Scholar 

  • Benson SW (1976) Thermochemical Kinetics, 2nd edn. Wiley, New York

    Google Scholar 

  • Bentz T, Giri BR, Hippler H et al (2007) Reaction of hydrogen atoms with propyne at high temperatures: an experimental and theoretical study. J Phys Chem 111:3812–3818

    Article  Google Scholar 

  • Beyer T, Swinehart TF (1973) Algorithm 448: Number of multiply-restricted partitions. Comm Assoz Comput Mach 16:379–379

    Google Scholar 

  • Brouwer L, Cobos CJ, Troe J et al (1987) Specific rate constants k(E, J) and product state distributions in simple bond fission reactions. II. Application to HOOH → OH + OH. J Chem Phys 86:6171–6182

    Article  Google Scholar 

  • Bunker DL, Pattengill M (1968) Monte carlo calculations. VI. A re-evaluation of the RRKM theory of unimolecular reaction rates. J Chem Phys 48:772–776

    Article  Google Scholar 

  • Carstensen H-H, Dean AM (2007) The kinetics of pressure-dependent reactions. In: Carr RW (ed) Modeling of chemical reactions. Comprehensive chemical kinetics, vol 42. Elsevier, Amsterdam, pp 101–184

    Google Scholar 

  • Chesnavich WJ, Bowers MT (1977) Statistical phase space theory of polyatomic systems: Rigorous energy and angular momentum conservation in reactions involving symmetric polyatomic species. J Chem Phys 66:2306–2315

    Article  Google Scholar 

  • Clary DC (2008) Theoretical studies on bimolecular reaction dynamics. Proc Natl Acad Sci USA 105:12649–12653

    Article  Google Scholar 

  • Cobos CJ, Troe J (1985) Theory of thermal unimolecular reactions at high pressures II. Analysis of experimental results. J Chem Phys 83:1010–1015

    Article  Google Scholar 

  • Eliason MA, Hirschfelder JO (1959) General collision theory treatment for the rate of bimolecular, gas phase reactions. J Chem Phys 30:1426–1436

    Article  Google Scholar 

  • Ellingson BA, Lynch VA, Mielke SL et al (2006) Statistical thermodynamics of bond torsional modes: Tests of separable, almost-separable, and improved Pitzer–Gwinn approximations. J Chem Phys 125:084305/1–084305/17

    Google Scholar 

  • Fernández-Ramos A, Miller JA, Klippenstein SJ et al (2006) Modeling the kinetics of bimolecular reactions. Chem Rev 106:4518–4584

    Article  Google Scholar 

  • Forst W (1973) Theory of Unimolecular Reactions. Academic Press, New York

    Google Scholar 

  • Forst W (2003) Unimolecular Reactions: A Concise Introduction. Cambridge University Press, Cambridge

    Google Scholar 

  • Frankcombe TJ, Smith SC, Gates KE et al (2000) A master equation model for bimolecular reactions via multi-well isomerizing intermediates. Phys Chem Chem Phys 2:793–803

    Article  Google Scholar 

  • Friedrichs G, Colberg M, Dammeier J et al (2008) HCO formation in the thermal unimolecular decomposition of glyoxal: Rotational and weak collision effects. Phys Chem Chem Phys 10:6520–6533

    Article  Google Scholar 

  • Friese P, Simmie JM, Olzmann M (2013) The reaction of 2,5-dimethylfuran with hydrogen atoms—an experimental and theoretical study. Proc Combust Inst 34:233–239

    Article  Google Scholar 

  • Gang J, Pilling MJ, Robertson SH (1996) Partition functions and densities of states for butane and pentane. J Chem Soc Faraday Trans 92:3509–3518

    Article  Google Scholar 

  • Gilbert RG, King KD (1980) Gas/gas and gas/wall average energy transfer from very low-pressure pyrolysis. Chem Phys 49:367–375

    Article  Google Scholar 

  • Gilbert RG, Luther K, Troe J (1983) Theory of thermal unimolecular reactions in the fall-off range. II. Weak collision rate constant. Ber Bunsenges Phys Chem 87:169–177

    Article  Google Scholar 

  • Gilbert RG, Smith SC (1990) Theory of unimolecular and recombination reactions. Blackwell, Oxford

    Google Scholar 

  • Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes. McGraw-Hill, New York

    Google Scholar 

  • Glowacki DR, Liang C-H, Morley C et al (2012) MESMER: an open-source master equation solver for multi-energy well reactions. J Phys Chem A 116:9545–9560

    Article  Google Scholar 

  • Golden DM, Barker JR (2011) Pressure- and temperature-dependent combustion reactions. Combust Flame 158:602–617

    Article  Google Scholar 

  • González-García N, Olzmann M (2010) Kinetics of the chemically activated HSO5 radical under atmospheric conditions—a master-equation study. Phys Chem Chem Phys 12:12290–12298

    Article  Google Scholar 

  • Hack W, Hoyermann K, Kersten C et al (2001) Mechanism of the 1–C4H9 + O reaction and the kinetics of the intermediate 1–C4H9O radical. Phys Chem Chem Phys 3:2365–2371

    Article  Google Scholar 

  • Hippler H, Troe J, Wendelken HJ (1983) Collisional deactivation of vibrationally highly excited polyatomic molecules. II. Direct observations for excited toluene. J Chem Phys 78:6709–6717

    Article  Google Scholar 

  • Hirschfelder JO, Wigner E (1939) Some quantum-mechanical considerations in the theory of reactions involving an activation energy. J Chem Phys 7:616–628

    Article  Google Scholar 

  • Holbrook KA, Pilling MJ, Robertson SH (1996) Unimolecular reactions, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Hold U, Lenzer T, Luther K et al (1997) Collisional energy transfer probabilities in the deactivation of highly vibrationally excited aromatics. Ber Bunsenges Phys Chem 101:552–565

    Article  Google Scholar 

  • Horiuti J (1938) On the statistical mechanical treatment of the absolute rate of chemical reaction. Bull Chem Soc Japan 13:210–216

    Article  Google Scholar 

  • Hoyermann K, Maarfeld S, Nacke F et al (2010) Rate coefficients for cycloalkyl + O reactions and product branching in the decomposition of chemically activated cycloalkoxy radicals: an experimental and theoretical study. Phys Chem Chem Phys 12:8953–8967

    Article  Google Scholar 

  • Jeffrey SJ, Gates KE, Smith SC (1996) Full iterative solution of the two-dimensional master equation for thermal unimolecular reactions. J Phys Chem 100:7090–7096

    Article  Google Scholar 

  • Keck JC (1967) Variational theory of reaction rates. Adv Chem Phys 13:85–121

    Article  Google Scholar 

  • Klippenstein SJ (1991) Variational optimizations in the Rice–Ramsperger–Kassel–Marcus theory calculations for unimolecular dissociations with no reverse barrier. J Chem Phys 96:367–371

    Google Scholar 

  • Klippenstein SJ (2003) RRKM theory and its implementation. In: Green NJB (ed) Unimolecular kinetics Part 1. The reaction step. Comprehensive chemical kinetics, vol 39. Elsevier, Amsterdam, pp 55–103

    Google Scholar 

  • Klippenstein SJ, Miller JA (2002) From the time-dependent, multiple-well master equation to phenomenological rate coefficients. J Phys Chem A 106:9267–9277

    Article  Google Scholar 

  • Knyazev VD (1998) Density of States of one-dimensional hindered internal rotors and separability of rotational degrees of freedom. J Phys Chem A 102:3916–3922

    Article  Google Scholar 

  • Knyazev VD, Tsang W (2000) Chemically and thermally activated decomposition of secondary butyl radical. J Phys Chem A 104:10747–10765

    Article  Google Scholar 

  • Lifshitz A, Tamburu C, Shashua R (1998) Thermal decomposition of 2,5-dimethylfuran. Experimental results and computer modeling. J Phys Chem A 102:10655–10670

    Article  Google Scholar 

  • Maergoiz AI, Nikitin EE, Troe J (1991) Adiabatic channel potential curves for two linear dipole rotors: II. Analytical representation of channel potentials and rate expressions for identical rotors. Z Phys Chem 172:129–156

    Google Scholar 

  • Marcus RA (1952) Unimolecular dissociations and free radical recombination reactions. J Chem Phys 20:359–364

    Article  Google Scholar 

  • Miller JA, Klippenstein SJ (2003) From the multiple-well master equation to phenomenological rate coefficients: Reactions on a C3H4 potential energy surface. J Phys Chem A 107:2680–2692

    Article  Google Scholar 

  • Miller JA, Klippenstein SJ (2006) Master equation methods in gas phase chemical kinetics. J Phys Chem A 110:10528–10544

    Article  Google Scholar 

  • Miller JA, Pilling MJ, Troe J (2005) Unravelling combustion mechanisms through a quantitative understanding of elementary reactions. Proc Combust Inst 30:43–88

    Article  Google Scholar 

  • Nikitin EE (1965) Statistical theory of endothermic reactions, part 2. Monomolecular reactions. Theor Exp Chem 1:90–94

    Article  Google Scholar 

  • Olzmann M (1997) On nascent angular-momentum distributions in complex-forming bimolecular reactions. Ber Bunsenges Phys Chem 101:533–537

    Article  Google Scholar 

  • Olzmann M (2002) On the role of bimolecular reactions in chemical activation systems. Phys Chem Chem Phys 4:3614–3618

    Article  Google Scholar 

  • Olzmann M, Troe J (1992) Rapid approximate calculation of numbers of quantum states W(EJ) in the phase space theory of unimolecular bond fission reactions. Ber Bunsenges Phys Chem 96:1327–1332

    Article  Google Scholar 

  • Olzmann M, Troe J (1994) Approximate determination of rovibrational densities of states ρ(EJ) and number of states W(E, J). Ber Bunsenges Phys Chem 98:1563–1574

    Article  Google Scholar 

  • Oref I, Tardy DC (1990) Energy transfer in highly excited large polyatomic molecules. Chem Rev 90:1407–1445

    Article  Google Scholar 

  • Pechukas P, Light JC (1965) On detailed balancing and statistical theories of chemical kinetics. J Chem Phys 42:3281–3291

    Article  MathSciNet  Google Scholar 

  • Pilling MJ (2008) Interaction between theory and experiment in the investigation of elementary reactions of importance in combustion. Chem Soc Rev 37:676–685

    Article  Google Scholar 

  • Pilling MJ, Robertson SH (2003) Master equation models for chemical reactions of importance in combustion. Annu Rev Phys Chem 54:245–275

    Article  Google Scholar 

  • Pollak E, Pechukas P (1978) Symmetry numbers, not statistical factors, should be used in absolute rate theory and in Broensted relations. J Am Chem Soc 100:2984–2991

    Article  Google Scholar 

  • Press WH, Teukolski SA, Vetterling WT et al (1992) Numerical recipes in fortran: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Pritchard HO (1984) The quantum theory of unimolecular reactions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Quack M, Troe J (1974) Specific rate constants of unimolecular processes II. Adiabatic channel model. Ber Bunsenges Phys Chem 78:240–252

    Article  Google Scholar 

  • Quack M, Troe J (1977) Unimolecular processes V: Maximum free energy criterion for the high pressure limit of dissociation reactions. Ber Bunsenges Phys Chem 81:329–337

    Article  Google Scholar 

  • Rossi MJ, Pladziewicz JR, Barker JR (1983) Energy-dependent energy transfer: Deactivation of azulene (S 0, E vib) by 17 collider gases. J Chem Phys 78:6695–6708

    Article  Google Scholar 

  • Schranz HW, Nordholm S (1984) Theory of chemically activated unimolecular reactions. Weak collisions and steady states. Chem Phys 87:163–177

    Article  Google Scholar 

  • Smith BT, Boyle JM, Garbow BS et al (1974) Matrix eigensystem routines—EISPACK guide. In: Goos G, Hartmanis J (eds) Lecture Notes in Computer Science, vol 6. Springer, Berlin

    Google Scholar 

  • Smith SC, McEwan MJ, Gilbert RG (1989) The relationship between recombination, chemical activation and unimolecular dissociation rate coefficients. J Chem Phys 90:4265–4273

    Article  Google Scholar 

  • Snider N (1984) Deductions from the master equation for chemical activation. J Chem Phys 80:1885–1893

    Article  Google Scholar 

  • Snider N (1986) Model dependence of collision efficiencies for thermal unimolecular reactions. J Phys Chem 90:4366–4372

    Article  Google Scholar 

  • Stein SE, Rabinovitch BS (1973) Accurate evaluation of internal energy level sums and densities including anharmonic oscillators and hindered rotors. J Chem Phys 588:2438–2445

    Article  Google Scholar 

  • Steinfeld JI, Francisco JS, Hase WL (1989) Chemical kinetics and dynamics. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Troe J (1977a) Theory of thermal unimolecular reactions at low pressures. I. Solution of the master equation. J Chem Phys 66:4745–4757

    Article  Google Scholar 

  • Troe J (1977b) Theory of thermal unimolecular reactions at low pressures. II. Strong collision rate constants. J Chem Phys 66:4758–4775

    Article  Google Scholar 

  • Troe J (1981) Theory of thermal unimolecular reactions at high pressures. J Chem Phys 75:226–237

    Article  Google Scholar 

  • Troe J (1983a) Approximate expressions for the yields of unimolecular reactions with chemical and photochemical activation. J Phys Chem 87:1800–1804

    Article  Google Scholar 

  • Troe J (1983b) Specific rate constants k(E, J) for unimolecular bond fissions. J Chem Phys 79:6017–6029

    Article  Google Scholar 

  • Troe J (1987) On the role of collisional processes in thermal unimolecular reactions. Z Phys Chem Neue Folge 154:73–90

    Article  Google Scholar 

  • Troe J (1988) Towards a quantitative understanding of elementary combustion reactions. Proc Combust Inst 22:843–862

    Google Scholar 

  • Troe J (1994) The colourful world of complex-forming bimolecular reactions. J Chem Soc Faraday Trans 90:2303–2317

    Article  Google Scholar 

  • Truhlar DG, Garrett BC (1980) Variational transition-state theory. Acc Chem Res 13:440–448

    Article  Google Scholar 

  • Vansteenkiste P, Van Neck D, Van Speybroeck V et al (2006) An extended hindered-rotor model with incorporation of Coriolis and vibrational-rotational coupling for calculating partition functions and derived quantities. J Chem Phys 124:044314/1–044314/14

    Google Scholar 

  • Wardlaw DM, Marcus RA (1988) On the statistical theory of unimolecular processes. Adv Chem Phys 70:231–263

    Article  Google Scholar 

  • Welz O, Striebel F, Olzmann M (2008) On the thermal unimolecular decomposition of the cyclohexoxy radical—an experimental and theoretical study. Phys Chem Chem Phys 10:320–329

    Article  Google Scholar 

  • Wigner E (1937) Calculation of the rate of elementary association reactions. J Chem Phys 5:720–725

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft (SFB 606 “Non-Stationary Combustion: Transport Phenomena, Chemical Reactions, Technical Systems”) and by the European Cooperation in Science and Technology (COST, Action CM0901 “Detailed Chemical Kinetic Models for Cleaner Combustion”) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Olzmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Olzmann, M. (2013). Statistical Rate Theory in Combustion: An Operational Approach. In: Battin-Leclerc, F., Simmie, J., Blurock, E. (eds) Cleaner Combustion. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5307-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5307-8_21

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5306-1

  • Online ISBN: 978-1-4471-5307-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics