Skip to main content

Calculation of Molecular Thermochemical Data and Their Availability in Databases

  • Chapter
  • First Online:
Cleaner Combustion

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Thermodynamic properties of molecules can be obtained by experiment, by statistical mechanics in conjunction with electronic structure theory, and by empirical rules like group additivity. The latter two methods are briefly reviewed in this chapter. The overview of electronic structure methods is intended for readers less experienced in electronic structure theory and focuses on concepts without going into mathematical details. This is followed by a brief description of group additivity schemes; finally, an overview of databases listing reliable thermochemical data is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fields where the needed molecular properties are calculated using electronic structure theory methods, one often finds the reference “quantum mechanical” to emphasize that the parameters are calculated using electronic structure theory instead of being estimated using empirical rules. This term is quite misleading as it makes the impression that the nuclear motion is also handled using the methods of quantum mechanics, which is generally done in a very approximate (rigid rotor—harmonic oscillator) way. “Quantum chemistry” is a much better term to describe the methodology in such applications.

References

  • Active Thermochemical Table Webpage http://atct.anl.gov/. Accessed 14 Jan 2013

  • Allen TL (1959) Bond energies and the interactions between next-nearest neighbors. I. Saturated hydrocarbons, diamond, sulfanes, S8, and organic sulfur compounds. J Chem Phys 31:1039–1049

    Article  Google Scholar 

  • Almlöf J, Taylor PR (1987) General contraction of Gaussian basis sets. I Atomic natural orbitals for first- and second-row atoms. J Chem Phys 84:4070–4078

    Article  Google Scholar 

  • Atkins P, De Paula J (2005) Elements of physical chemistry, Oxford University Press

    Google Scholar 

  • Ayala PA, Schlegel HB (1998) Identification and treatment of internal rotation in normal mode vibrational analysis. J Chem Phys 108:2314–2325

    Article  Google Scholar 

  • Baboul AG, Curtiss LA, Redfern PC et al (1999) Gaussian-3 theory using density functional geometries and zero-point energies. J Chem Phys 110:7650–7657

    Article  Google Scholar 

  • Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  • Bader RFW, Bayles D (2000) Properties of atoms in molecules: group additivity. J Phys Chem A 104:5579–5589

    Article  Google Scholar 

  • Basilevsky MV (1969) The molecular orbital method and the reactivity of organic molecules. Khimia Publishers, Moscow (in Russian)

    Google Scholar 

  • Benson SW (1968) Thermochemical kinetics. Wiley, New York

    Google Scholar 

  • Benson SW, Buss JH (1958) Additivity rules for the estimation of molecular properties Thermodynamic properties. J Chem Phys 29:546–572

    Article  Google Scholar 

  • Berthelot M (1879) Essai de mécanique chimique fondée sur la thermochimie. Dunod, Paris

    Google Scholar 

  • Blurock ES, Warth V, Grandmougin XF et al (2012) JTHERGAS: Thermodynamic estimation from 2D graphical representations of molecules. Energy 43:161–171

    Article  Google Scholar 

  • Burcat A (2009) Ab initio calculations of carbon-containing species and comparison with group additivity results. Part II. C4 species. J Chem Eng Data 54:1829–1835

    Article  Google Scholar 

  • Burcat A, Ruscic B (2005) Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active chemical tables, technical report TAE 960 and ANL-05/20, Technion-IIT, Haifa, and Argonne National Laboratory, Argonne, Illinois, (Last print version outdated by now)

    Google Scholar 

  • Chase MW Jr (1998) NIST-JANAF thermochemical tables, Part I and II‚ 4th ed. J Phys Chem Ref Data, Monograph 9:1–1951 http://www.nist.gov/srd/monogr.cfm, accessed 2 Jul 2013

    Google Scholar 

  • Chase MW Jr, Davies CA, Downey JR Jr et al (1985) JANAF thermochemical tables, 3rd ed. J Phys Chem Ref Data 14 (Suppl 1) :1–1856. Available from http://www.nist.gov/srd/monogr.cfm, accessed 2 Jul 2013

    Google Scholar 

  • CHETAH Version 7.2 The ASTM computer program for chemical thermodynamic and energy release evaluation (NIST Special Database 16), 4th edn. (1998) URL http://www.astm.org

  • Cohen N (1982) The use of transition-state theory to extrapolate rate coefficients for reactions of OH with alkanes. Int J Chem Kinet 14:1339–1362

    Article  Google Scholar 

  • Cohen N (1991) Are reaction rate coefficients additive? Revised transition state theory calculations for OH + alkane reactions. Int J Chem Kin 23:397–417

    Article  Google Scholar 

  • Cohen N (1996) Revised group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds. J Phys Chem Ref Data 25:1411–1481

    Article  Google Scholar 

  • Cohen N, Benson SW (1993) Estimation of heats of formation of organic-compounds by additivity methods. Chem Rev 93:2419–2438

    Article  Google Scholar 

  • Cox JD, Pilcher G (1970) Thermochemistry of organic and organometallic compounds. Chapter. 7, Academic Press, New York

    Google Scholar 

  • Cox JD, Wagman DD, Medvedev VA (1989) CODATA key values for thermodynamics. Hemisphere Publishing Corporation. New York. Summary available at http://www.codata.org/resources/databases/key1.html. Accessed 27 Dec 2012

  • Cramer CH (2013) Essentials of computational chemistry: theories and models. Errata on http://pollux.chem.umn.edu/Book.html. Accessed 3 Jan 2013

  • Cramer CH (2004) Essentials of computational chemistry: theories and models, 2nd edn. Wiley, England

    Google Scholar 

  • Curtiss LA, Raghavachari K, Trucks GW et al (1991) Gaussian2 theory for molecular energies of first and second row compounds. J Chem Phys 94:7221–7230

    Article  Google Scholar 

  • DIPPR 801 Database (2013) http://www.aiche.org/dippr/events-products/801-database

  • Domalski ES (1972) Selected values of heats of combustion and heats of formation of organic compounds containing the elements C, H, N, O, P and S. J Phys Chem Ref Data 1:221–277

    Article  Google Scholar 

  • Dorofeeva OV, Novikov VP, Neumann DB (2001) NIST-JANAF thermochemical tables. I. Ten organic molecules related to atmospheric chemistry. J Phys Chem Ref Data 30:475–514

    Article  Google Scholar 

  • Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations I the atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  Google Scholar 

  • Ellingson BA, Lynch VA, Mielke SL et al (2006) Statistical thermodynamics of bond torsional modes: tests of separable, almost-separable, and improved Pitzer-Gwinn approximations. J Chem Phys 125:084305

    Article  Google Scholar 

  • EMSL basis (2013). Set exchange library, based on Schuchardt et al (2007). J Chem Inf Model 47(3):1045–1052https://bse.pnl.gov/bse/portal. Accessed 8 Jan 2013,

  • Foresman JB, Frisch AE (1996) Exploring chemistry with electronic structure methods. 2nd edn. Gaussian Inc

    Google Scholar 

  • Goos E, Burcat A, Ruscic B (2013a) Ideal gas thermochemical database with updates from active thermochemical tables. Available via ftp://ftp.technion.ac.il/pub/supported/aetdd/thermodynamics mirrored at http://garfield.chem.elte.hu/burcat/burcat.html and also available from http://www.dlr.de/vt/en/

  • Goos E, Sickfeld Ch, Mauß F et al (2013b) Prompt NO formation in flames: the influence of NCN thermochemistry. Proc Comb Inst 34:657–666

    Article  Google Scholar 

  • Gordon S, McBride BJ (1971) Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks and Chapman-Jouguet detonations, NASA Report SP-273

    Google Scholar 

  • Greenshields JB, Rossini FD (1958) Molecular structure and properties of hydrocarbons and related compounds. J Phys Chem 62:271–280

    Article  Google Scholar 

  • Gurvich L (1988) Reference books and data banks on the thermodynamic properties of individual substances. Pure Appl Chem 61:1027–1031

    Article  Google Scholar 

  • Gurvich LV, Veyts IV, Alcock AB (1989) Thermodynamic properties of individual substances, 4th ed.vol 1, Hemisphere Publishing Co

    Google Scholar 

  • Gurvich LV, Veyts IV, Alcock AB (1991) Thermodynamic properties of individual substances, 4th ed.vol 2, Hemisphere Publishing Co

    Google Scholar 

  • Gurvich LV, Veyts IV, Alcock AB (1994) Thermodynamic properties of individual substances, 4th ed.vol 3, Hemisphere Publishing Co

    Google Scholar 

  • Gurvich LV, Veyts IV, Alcock AB (1997) Thermodynamic properties of individual substances, 4th ed.vol 4–6, Hemisphere Publishing Co

    Google Scholar 

  • Hehre WJ, Ditchfield R, Pople JA (1971) Self-consistent molecular orbital methods XII further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261

    Article  Google Scholar 

  • Hehre WJ, Radom L, PvR Schleyer, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  • Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic-structure theory, Wiley, 1st edn

    Google Scholar 

  • Helgaker T, Jørgensen P, Olsen J (2013) Molecular electronic-structure theory. In: Paperback reprint of 1st edn. Wiley, 2nd revised Edition Paperback expected

    Google Scholar 

  • Janz GJ (1955) The estimation of thermodynamic properties for organic compounds and chemical reactions. Quart Rev Chem Soc 9:229–254. doi:10.1039/QR9550900229

    Article  Google Scholar 

  • Janz GJ (1958) Estimation of thermodynamic properties of organic compounds. Academic Press, New York

    Google Scholar 

  • Jensen F (2006) Introduction to computational chemistry. 2nd edn, Wiley

    Google Scholar 

  • JPCRD and monographs reprints are available for free from http://www.nist.gov/srd/reprints.cfm or http://www.nist.gov/srd/monogr.cfm

  • Kee RJ, Rupley FM, Meeks E, et al (1996) CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gasphase chemical and plasma kinetics, Sandia Report UC-405, SAND96-8216

    Google Scholar 

  • Laidler KJ (1956) A System of molecular thermochemistry for organic gases and liquids. Can J Chem 34:626–648

    Article  Google Scholar 

  • Levine IN (2007) Quantum chemistry. 6th International edition. Alpha Books, Pearson, California

    Google Scholar 

  • Lias SG, Bartmess JE, Liebman JF, et al (1988) Gas-phase ion and neutral thermochemistry. J Phys Chem Ref Data 17 (Supplement 1)

    Google Scholar 

  • Marsh KN (2001) Calorimetry, In: Moore JH, Spencer ND (2001) Encyclopedia of chemical physics and physical chemistry, vol 2. Institute of Physics Publishing, Bristol and Philadelphia

    Google Scholar 

  • Marsh KN, Das A, Frenkel M, et al (1988) TRC Thermodynamic Tables, Non-Hydrocarbons, Vols. I-VIII and Hydrocarbons, Vols. I-XII, Thermodynamics Research Center Texas A&M University, College Station, Texas; TRC (1997) Selected Values of Properties of Chemical Compounds, Thermodynamics Research Center, Texas A&M University, College Station, Texas

    Google Scholar 

  • Mayer I (2003) Simple theorems, proofs, and derivations in quantum chemistry. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  • McBride BJ, Gordon S (1967) FORTRAN IV program for calculation of thermodynamic data, NASA TN-D 4097

    Google Scholar 

  • McBride BJ, Zehe MJ, and Gordon S (2002) NASA Glenn Coefficients for calculating thermodynamic properties of individual species. NASA report TP-2002-211556

    Google Scholar 

  • Muller C, Michel V, Scacchi G et al (1995) THERGAS—A computer program for the evaluation of thermochemical data of molecules and free-radicals in the gas phase. Journal de Chimie Physique et de Physico-Chimie Biologiques 92:1154–1178

    Google Scholar 

  • NASA Thermo Build http://www.grc.nasa.gov/WWW/CEAWeb/ceaThermoBuild.htm Accessed 29 Dec 2012

  • NIST TRC Web Thermo Tables (WTT) http://trc.nist.gov/tde.html. Accessed 30 Dec 2012

  • NIST JANAF thermochemical tables (1985). NIST Standard Reference Database 13 (Version 1.0) Data compiled and evaluated by Chase MW Jr, Davies CA, Downey JR Jr, Frurip DJ, McDonald RA, Syverud AN http://kinetics.nist.gov/janaf/. Accessed 28 Dec 2012

  • NIST CCCBD, Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 15b, August 2011, Russell D. Johnson III (ed), http://cccbdb.nist.gov/

  • NIST Chemistry WebBook, NIST Standard Reference Database Number 69, http://webbook.nist.gov/chemistry Accessed 30 Dec 2012

  • Pedley JB (1994) Thermochemical data and structures of organic compounds. vol. 1, (TRC Data Series) Thermodynamics Research Center, College Station, TX, USA

    Google Scholar 

  • Pedley JB, Naylor RD, Rylance SP (1986) Thermochemical Data of Organic Compounds, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  • Piszczatowski K, Lach G, Przybytek M et al (2009) Theoretical Determination of the Dissociation Energy of Molecular Hydrogen. J Chem Theor Comp 11:3039–3048

    Article  Google Scholar 

  • Pitzer KS (1940) The vibration frequencies and thermodynamic functions of long chain hydrocarbons. J Chem Phys 8:711–720

    Article  Google Scholar 

  • Pitzer KS, Gwinn WD (1942) Energy levels and thermodynamic functions for molecules with internal rotation: I Rigid frame with attached tops. J Chem Phys 10:428–440

    Article  Google Scholar 

  • Platt JR (1947) Influence of neighbor bonds on additive bond properties in paraffins. J Chem Phys 15:419–420

    Article  Google Scholar 

  • Platt JR (1952) Prediction of isomeric differences in paraffin properties. J Phys Chem 56:328–336

    Article  Google Scholar 

  • Poling BE, Prausnitz JM, O′Connell JP (2001) The properties of gases and liquids, 5th edn. McGraw Hill, New York

    Google Scholar 

  • Polyansky OL, Császár AG, Shirin SV et al (2003) High-accuracy ab initio rotation-vibration transitions for water. Science 299:539–542

    Article  Google Scholar 

  • Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw Hill, New York

    Google Scholar 

  • Ritter ER (1991) THERM: a computer code for estimating thermodynamic properties for species important to combustion and reaction modeling. J Chemical Information and Computer Sciences 31:400–408

    Article  Google Scholar 

  • Ritter ER, Bozzelli JW (1991) Therm: thermodynamic property estimation for gas phase radicals and molecules. Int J Chem Kin 23:767–778

    Article  Google Scholar 

  • RMG—reaction mechanism generator, the link connects to the python version, but there is a Java version, too http://greengroup.github.com/RMG-Py/. Accessed 27 Dec 2012

  • Rossini FD, Wagman DD, Evans WH et al (1952) Selected values of chemical thermodynamic properties, Circular of the National Bureau of Standards 500. National Bureau of Standards, US Department of Commerce

    Google Scholar 

  • Rossini FD, Pitzer KS, Arnett RL et al (1953) Selected values of physical and thermodynamic properties of hydrocarbons and related compounds. Carnegie Press, Pittsburgh, PA, American Petroleum Institute

    Google Scholar 

  • Ruscic B, Wagner AF, Harding LB et al (2002) On the enthalpy of formation of hydroxyl radical and gas-phase bond dissociation energies of water and hydroxyl. J Phys Chem A 106:2727–2747

    Article  Google Scholar 

  • Ruscic B, Pinzon RE, Morton ML et al (2004) Introduction to active thermochemical tables: several “Key” enthalpies of formation revisited. J Phys Chem A 108:9979–9997

    Article  Google Scholar 

  • Ruscic B, Boggs JE, Burcat A et al (2005a) IUPAC critical evaluation of thermochemical properties of selected radicals: Part I. J Phys Chem Ref Data 34:573–656

    Article  Google Scholar 

  • Ruscic B, Pinzon RE, von Laszewski G et al (2005b) Active thermochemical tables: thermochemistry for the 21st century. J Phys: Conf Ser 16:561–570

    Article  Google Scholar 

  • Ruscic B, Pinzon RE, Morton ML et al (2006) Active thermochemical tables: accurate enthalpy of formation of hydroperoxyl radical, HO2. J Phys Chem A 108:6592–6601

    Article  Google Scholar 

  • Schuchardt KL, Didier BT, Elsethagen T et al (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47(3):1045–1052. doi:101021/ci600510j

    Article  Google Scholar 

  • Shomate CH (1954) A method for evaluating and correlating thermodynamic data. J Phys Chem 58:368–372

    Google Scholar 

  • Slater JC (1963–1974) Quantum theory of molecules and solids, vols. 1–4: Electronic structure of molecules, McGraw-Hill, New York

    Google Scholar 

  • Somayajulu GR, Zwolinski BJ (1966) Generalized treatment of alkanes. Trans Faraday Soc 62:2327–2340

    Article  Google Scholar 

  • Stein SE, Rukkers JM, Brown RL (1991) NIST standard reference database 25: NIST structures and properties database and estimation program; National Institute of Standards and Technology: Gaithersburg, MD, see also http://webbook.nist.gov/chemistry/grp-add/S-and-P.html#ref5. Accessed 29 Dec 2012

  • Stevens WR, Ruscic B, Baer T (2010) The heats of formation of C6H5, C6H5 +, and C6H5NO by TPEPICO and active thermochemical tables analysis. J Phys Chem A 114:13134–13145

    Article  Google Scholar 

  • Stull DR, Westrum EF, Sinke GC (1969) The chemical thermodynamics of organic compounds. Wiley, New York

    Google Scholar 

  • Sumathi R, Carstensen HH, Green WH (2001a) Reaction Rate Prediction via Group Additivity Part 1: H abstraction from alkanes by H and CH3. J Phys Chem A 105:6910–6925

    Article  Google Scholar 

  • Sumathi R, Carstensen HH, Green WH (2001b) Reaction rate prediction via group additivity. Part 2: H-abstraction from alkenes, alkynes, alcohols, aldehydes, and acids by H atoms. J Phys Chem A 105:8969–8984

    Article  Google Scholar 

  • Sumathi R, Carstensen HH, Jr GreenWH (2002) Reaction rate predictions via group additivity. Part 3: effect of substituents with CH2 as the mediator. J Phys Chem A 106:5474–5489

    Google Scholar 

  • ThermoData Engine (TDE) (2012) NIST TDE 103a—pure compounds, NIST TDE 103b—pure compounds, binary mixtures, ternary mixtures and chemical reactions

    Google Scholar 

  • ThermoML IUPAC Standard is an XML based standard for thermodynamic data communication that was initially developed within IUPAC Project 2002-055-3-024, later extended within the IUPAC project 2007-039-1-024 (See also: Frenkel M et al. (2006) Pure Appl Chem 78:541–612, Pure Appl Chem (2011) 83:1937–1967) http://www.iupac.org/namespaces/ThermoML/index.html. Accessed 27 Dec 2012

  • ThermoML web archive, http://trc.nist.gov/ThermoML.html. Accessed 14 Jan 2013

  • Thomsen J (1886) Thermochemische Untersuchungen vol. IV, J. A. Barth, Leipzig in German

    Google Scholar 

  • Truhlar DG (2008) Molecular modeling of complex chemical systems. J Am Chem Soc 130, 16824–16827, Glossary, http://pubs.acs.org/JACSbeta/JVI/issue3.html and http://pubs.acs.org/JACSbeta/jvi/glossary.html

  • Vansteenkiste P, Van Neck D, Van Speybroeck V et al (2006) An extended hindered-rotor model with incorporation of Coriolis and vibrational-rotational coupling for calculating partition functions and derived quantities. J Chem Phys 124:044314 additions and corrections (Publisher’s Note) J Chem Phys 125: 049902

    Article  Google Scholar 

  • Veszprémi T, Fehér M (1999) Quantum chemistry: fundamentals to applications. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  • Wiberg KB, Bader RFW, Lau CDH (1987) Theoretical analysis of hydrocarbon properties. 2. Additivity of group properties and the origin of strain energy. J Am Chem Soc 109:1001–1012

    Article  Google Scholar 

  • Zülicke L (1973) Quantenchemie. Ein Lehrgang. Band 1: Grundlagen und allgemeine Methoden. VEB Deutscher Verlag der Wissenschaften, Berlin (in German; a Russian edition is available)

    Google Scholar 

  • Zülicke L (1985) Quantenchemie. Ein Lehrgang. Band 2, Atombau, Chemische Bindung und molekulare Wechselwirkungen, Hüthig Verlag, Heidelberg (in German; a Russian edition is available)

    Google Scholar 

Download references

Acknowledgments

This chapter has been written within the COST Action CM901 “Detailed Chemical Kinetic Models for Cleaner Combustion”. E. Goos and G. Lendvay thanks financial support from the Energy Program of Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR, German Aerospace Center) and from the Hungarian Scientific Research Fund, Grant No. K77938, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elke Goos or György Lendvay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Goos, E., Lendvay, G. (2013). Calculation of Molecular Thermochemical Data and Their Availability in Databases. In: Battin-Leclerc, F., Simmie, J., Blurock, E. (eds) Cleaner Combustion. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5307-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5307-8_20

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5306-1

  • Online ISBN: 978-1-4471-5307-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics