Skip to main content

Storage of Chemical Kinetic Information

  • Chapter
  • First Online:
Cleaner Combustion

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter describes various methods for storing chemical kinetic mechanistic information within combustion models. The most obvious way is the definition of the kinetic system of differential equations by a detailed reaction mechanism. Parameterisation of such reaction mechanisms is commented upon here. Another possible approach is to store the solution of the system of ordinary or partial differential equations that defines the model within look-up tables. Such data can then be “retrieved” during combustion simulations within complex reacting flow models instead of solving the kinetic system of differential equations, often at much lower computational cost. Several such methods for storage and retrieval are reviewed here. As an alternative approach, functional representations of the time dependant kinetic changes or the look-up table contents can be achieved, using for example polynomial functions or artificial neural networks and these are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Androulakis IP (2004) Store and retrieve representations of dynamic systems motivated by studies in gas phase chemical kinetics. Comput Chem Eng 28:2141–2155

    Article  Google Scholar 

  • Atanga GF (2012) Direct numerical simulation of turbulent flames on parallel computers, Ph.D. Thesis, Otto-von-Guericke-Universitat

    Google Scholar 

  • Bekdemir C, Somers LMT, de Goey LPH (2011) Modeling Diesel engine combustion using pressure dependent flamelet generated manifolds. Proc Combust Inst 33:2887–2894

    Article  Google Scholar 

  • Bell JB, Brown NJ, Day MS et al (2000) Scaling and efficiency of PRISM in adaptive simulations of turbulent premixed flames. Proc Combust Inst 28:107–113

    Article  Google Scholar 

  • Bilger RW (1990) On reduced mechanisms for methane-air combustion in non-premixed flames. Combust Flame 80:135–149

    Article  Google Scholar 

  • Blasco JA, Fueyo N, Dopazo C et al (2000) A self-organizing-map approach to chemistry representation in combustion applications. Combust Theory Modell 4:61–76

    Article  MATH  Google Scholar 

  • Blasco JA, Fueyo N, Dopazo C et al (1998) Modelling the temporal evolution of a reduced combustion chemical system with an Artificial Neural Network. Combust Flame 113(1–2):38–52

    Article  Google Scholar 

  • Blasco JA, Fueyo N, Dopazo C et al (1999a) Modelling the temporal evolution of a reduced combustion chemical system with an artificial neural network. Combust Flame 113:38–52

    Article  Google Scholar 

  • Blasco JA, Fueyo N, Larroya JC et al (1999b) A single-step time-integrator of a methane-air chemical system using artificial neural networks. Comput Chem Eng 23:1127–1133

    Article  Google Scholar 

  • Bongers H, van Oijen JA, de Goey LPH (2005) The flamelet generated manifold method applied to steady planar partially premixed counterflow flames. Comb Sci Tech 177(12):2373–2393

    Article  Google Scholar 

  • Box GEP, Hunter WG, Hunter JS (1978) Statistics for experiments. An introduction to design, data analysis, and model building. Wiley, New York

    Google Scholar 

  • Brad RB, Tomlin AS, Fairweather M et al (2007) The application of chemical reduction methods to a combustion system exhibiting complex dynamics. Proc Combust Inst 31:455–463

    Article  Google Scholar 

  • Brown NJ, Tonse SR (2004) PRISM piecewise reusable implementation of solution mapping to improve computational economy. Abs Pap Am Chem Soc 228:U308–U308

    Google Scholar 

  • Büki A, Perger T, Turányi T et al (2002) Repro-modelling based generation of intrinsic low-dimensional manifolds. J Math Chem 31:345–362

    Article  MathSciNet  MATH  Google Scholar 

  • Burke MP, Klippenstein SJ, Harding LB (2013) A quantitative explanation for the apparent anomalous temperature dependence of \(OH+HO_{2}\rightarrow H_{2}O+O_{2}\) through multi-scale modeling. Proc Combust Inst 34:547–555

    Google Scholar 

  • Cannon SM, Brewster BS, Smoot LD (1999) PDF modeling of lean premixed combustion using in situ tabulated chemistry. Combust Flame 119(3):233–252

    Article  Google Scholar 

  • Carstensen HH, Dean AM (2007) The kinetics of pressure-dependent reactions. Modeling of chemical reactions. Comprehensive Chemical Kinetics 42:105–187

    Google Scholar 

  • Chatzopoulos AK, Rigopoulos S (2013) A chemistry tabulation approach via rate-controlled constrained equilibrium (RCCE) and artificial neural networks (ANNs), with application to turbulent non-premixed CH4/H-2/N-2 flames. Proc Combust Inst 34:1465–1473

    Article  Google Scholar 

  • Chen JY, Blasco JA, Fueyo N et al (2000) An economical strategy for storage of chemical kinetics: Fitting in situ adaptive tabulation with artificial neural networks. Proc Comb Inst 28:115–121

    Article  Google Scholar 

  • Chen JY, Chang WC, Koszykowski M (1995) Numerical simulation and scaling of NOx emissions from turbulent hydrogen jet flames with various amounts of helium dilution. Combust Sci Technol 111:505–529

    Article  Google Scholar 

  • Choi Y, Chen JY (2005) Fast prediction of start-of-cornbustion in HCCI with combined artificial neural networks and ignition delay model. Proc Combust Inst 30:2711–2718

    Article  Google Scholar 

  • Christo FC, Masri AR, Nebot EM (1996a) Artificial Neural Network implementation of chemistry with pdf Simulation of H2/CO2 flames. Combust Flame 106:406–427

    Article  Google Scholar 

  • Christo FC, Masri AR, Nebot EM et al (1996b) An integrated PDF/neural network approach for simulating turbulent reacting systems. Proc Combust Inst 26:43–48

    Google Scholar 

  • Christo FC, Masri AR, Nebot EM, et al. (1995) Utilising artifical neural network and repro-modelling in turbulent combustion. In: Proceedings IEEE International Conference on Neural Networks, vol 1. pp 911–916

    Google Scholar 

  • Clifford LJ, Milne AM, Turányi T et al (1998) An induction parameter model for shock-induced hydrogen combustion simulations. Combust Flame 113(1–2):106–118

    Article  Google Scholar 

  • Colin O, Pires da Cruz A, Jay S (2005) Detailed chemistry-based auto-ignition model including low temperature phenomena applied to 3D engine calculations. Proc Combust Inst 30:2649–2656

    Article  Google Scholar 

  • Contino F, Jeanmart H, Lucchini T et al (2011) Coupling of in situ adaptive tabulation and dynamic adaptive chemistry: An effective method for solving combustion in engine simulations. Proc Combust Inst 33:3057–3064

    Article  Google Scholar 

  • Davis SG, Mhadeshwar AB, Vlachos DG et al (2004) A new approach to response surface development for detailed gas-phase and surface reaction kinetic model optimization. Int J Chem Kinet 36:94–106

    Article  Google Scholar 

  • de Goey LPH, van Oijen JA, Bongers H et al (2003) New flamelet based reduction methods: the bridge between chemical reduction techniques and flamelet methods. In: Proceedings of ECM

    Google Scholar 

  • Dunker AM (1986) The reduction and parameterization of chemical mechanisms for inclusion in atmospheric reaction-transport models. Atmos Environ 20(3):479–486

    Article  Google Scholar 

  • Dyer RS, Korakianitis T (2007) Pre-integrated response map for inviscid propane-air detonation. Combust Sci Technol 179:1327–1347

    Article  Google Scholar 

  • Enjalbert N, Domingo P, Vervisch L (2012) Mixing time-history effects in large eddy simulation of non-premixed turbulent flames: Flow-controlled chemistry tabulation. Combust Flame 159:336–352

    Article  Google Scholar 

  • Feeley R, Frenklach M, Onsum M et al (2006) Model discrimination using data collaboration. J Phys Chem A 110:6803–6813

    Article  Google Scholar 

  • Feeley R, Seiler P, Packard A et al (2004) Consistency of a reaction dataset. J Phys Chem A 108:9573–9583

    Article  Google Scholar 

  • Fiorina B, Gicquel O, Vervisch L et al (2005) Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combust Flame 140:147–160

    Article  Google Scholar 

  • Flemming F, Sadiki A, Janicka J (2000) LES using Artificial Neural Networks for chemistry representation. Prog Comput Fluid Dynam 5:375–385

    Article  Google Scholar 

  • Frenklach M, Packard A, Seiler P et al (2004) Collaborative data processing in developing predictive models of complex reaction systems. Int J Chem Kinet 36:57–66

    Article  Google Scholar 

  • Frenklach M, Wang H, Rabinowitz MJ (1992) Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method—combustion of methane. Prog Energy Combust Sci 18:47–73

    Article  Google Scholar 

  • Gicquel O, Darabiha N, Thevenin D (2000) Laminar premixed hydrogen/air counterflow flame simulations using Flame Prolongation of ILDM with differential diffusion. Proc Comb Inst 28:1901–1908

    Article  Google Scholar 

  • Gicquel O, Ribert O, Darabiha N et al (2006) Tabulation of complex chemistry based on self-similar behavior of laminar premixed flames. Combust Flame 146:649–664

    Article  Google Scholar 

  • Gilbert RG, Luther K, Troe J (1983) Theory of thermal unimolecular reactions in the fall-off range. II. Weak collision rate constants. Berichte der Bunsengesellschaft für physikalische. Chemie 87(2):169–177

    Google Scholar 

  • Godel G, Domingo P, Vervisch L (2009) Tabulation of NOx chemistry for large-eddy simulation of non-premixed turbulent flames. Proc Combust Inst 32:1555–1561

    Article  Google Scholar 

  • Ihme M, Marsden AL, Pitsch H (2008) Generation of optimal Artificial Neural Networks using a pattern search algorithm: Application to approximation of chemical systems. Neural Comput 20:573–601

    Article  MathSciNet  MATH  Google Scholar 

  • Ihme M, Schmitt C, Pitsch H (2009) Optimal Artificial Neural Networks and tabulation methods for chemistry representation in LES of a bluff-body swirl-stabilized flame. Proc Combust Inst 32:1527

    Article  Google Scholar 

  • Imbert B, Lafosse F, Catoire L et al (2008) Formulation reproducing the ignition delays simulated by a detailed mechanism: Application to n-heptane combustion. Combust Flame 155:380–408

    Article  Google Scholar 

  • James S, Anand MS, Razdan MK et al (2001) In situ detailed chemistry calculations in combustor flow analyses. J Eng Gas Turb Power 123(4):747–756

    Article  Google Scholar 

  • Jay S, Colin O (2011) A variable volume approach of tabulated detailed chemistry and its applications to multidimensional engine simulations. Proc Combust Inst 33:3065–3072

    Article  Google Scholar 

  • Kee RJ, Rupley FM, Miller JA (1989) CHEMKIN-II: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia National Laboratories, USA

    Google Scholar 

  • Kumar A, Mazumder S (2011) Adaptation and application of the in situ adaptive tabulation (ISAT) procedure to reacting flow calculations with complex surface chemistry. Comput Chem Eng 35(7):1317–1327

    Article  Google Scholar 

  • Lee JC, Najm HN, Lefantzi S, et al. (2005) On chain branching and its role in homogeneous ignition and premixed flame propagation. In: Bathe K (ed) Computational fluid and solid mechanics Elsevier Science, New York, pp 717–720

    Google Scholar 

  • Lee JC, Najm HN, Lefantzi S et al (2007) A CSP and tabulation-based adaptive chemistry model. Combust Theor Model 11(1):73–102

    Article  MATH  Google Scholar 

  • Li G, Wang S-W, Rabitz H (2002) Practical approaches to construct RS-HDMR component functions. J Phys Chem A 106:8721–8733

    Article  Google Scholar 

  • Li GY, Rabitz H, Hu JS et al (2008) Regularized random-sampling high dimensional model representation (RS-HDMR). J Math Chem 43(3):1207–1232

    Article  MathSciNet  MATH  Google Scholar 

  • Libby PA, Bray KNC (1980) Implications of the laminar flamelet model in premixed turbulent combustion. Combust Flame 39(1):33–41

    Article  Google Scholar 

  • Liew SK, Bray KNC, Moss JB (1981) A flamelet model of turbulent non-premixed combustion. Combust Sci Technol 27(1–2):69–73

    Article  Google Scholar 

  • Lodier G, Vervisch L, Moureau V et al (2011) Composition-space premixed flamelet solution with differential diffusion for in situ flamelet-generated manifolds. Combust Flame 158:2009–2016

    Article  Google Scholar 

  • Marsden AR, Frenklach M, Reible DD (1987) Increasing the computational feasibility of urban air-quality models that employ complex chemical mechanisms. JAPCA 37(4):370–376

    Article  Google Scholar 

  • Masri AR, Cao R, Pope SB et al (2004) PDF calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow. Combust Theor Model 8(1):1–22

    Article  Google Scholar 

  • Michel J-B, Colin O, Angelberger C (2010) On the formulation of species reaction rates in the context of multi-species CFD codes using complex chemistry tabulation techniques. Combust Flame 157:701–714

    Article  Google Scholar 

  • Michel J-B, Colin O, Angelberger C et al (2009) Using the tabulated diffusion flamelet model ADF-PCM to simulate a lifted methane-air jet flame. Combust Flame 156:1318–1331

    Article  Google Scholar 

  • Michel J-B, Colin O, Veynante D (2008) Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry. Combust Flame 152:80–99

    Article  Google Scholar 

  • Mosbach S, Aldawood AM, Kraft M (2008) Real-time evaluation of a detailed chemistry HCCI engine model using a tabulation technique. Combust Sci Technol 180(7):1263–1277

    Article  Google Scholar 

  • Nagy T, Turányi T (2011) Uncertainty of Arrhenius parameters. Int J Chem Kinet 43:359–378

    Article  Google Scholar 

  • Najafi-Yazdi A, Cuenot B, Mongeau L (2012) Systematic definition of progress variables and intrinsically low-dimensional, flamelet generated manifolds for chemistry tabulation. Combust Flame 159:1197–1204

    Article  Google Scholar 

  • NIST (2013) Chemical kinetics database. http://kinetics.nist.gov/kinetics/index.jsp

  • Pera C, Colin O, Jay S (2009) Development of a FPI detailed chemistry tabulation methodology for internal combustion engines. Oil Gas Sci Technol Rev IFP 64:243–258

    Google Scholar 

  • Pilling MJ, Seakins PW (1995) Reaction kinetics. Oxford University Press, Oxford

    Google Scholar 

  • Pope SB (1997) Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust Theor Model 1(1):41–63

    Article  MathSciNet  MATH  Google Scholar 

  • Saxena V, Pope SB (1999) PDF simulations of turbulent combustion incorporating detailed chemistry. Combust Flame 117(1–2):340–350

    Article  Google Scholar 

  • Sheen DA, Rosado-Reyes CM, Tsang W (2013) Kinetics of H atom attack on unsaturated hydrocarbons using spectral uncertainty propagation and minimization techniques. Proc Combust Inst 34:527–536

    Article  Google Scholar 

  • Sheen DA, Wang H (2011) The method of uncertainty quantification and minimization using polynomial chaos expansions. Combust Flame 158(12):2358–2374

    Article  Google Scholar 

  • Sheen DA, You X, Wang H et al (2009) Spectral uncertainty quantification, propagation and optimization of a detailed kinetic model for ethylene combustion. Proc Combust Inst 32:535–542

    Article  Google Scholar 

  • Shenvi N, Geremia JM, Rabitz H (2004) Efficient chemical kinetic modeling through neural network maps. J Chem Phys 120:9942–9951

    Google Scholar 

  • Shorter JA, Ip PC, Rabitz HA (1999) An efficient chemical kinetics solver using high dimensional model representation. J Phys Chem A 103(36):7192–7198

    Article  Google Scholar 

  • Stewart PH, Larson CW, Golden DM (1989) Pressure and temperature dependence of reactions proceeding via a bound complex. 2. Application to 2CH3 → C2H5 + H. Combust Flame 75:25–31

    Article  Google Scholar 

  • Taing S, Masri AR, Pope SB (1993) Pdf calculations of turbulent nonpremixed flames of H2/CO2 using reduced chemical mechanisms. Combust Flame 95(1–2):133–150

    Article  Google Scholar 

  • Tang Q, Xu J, Pope SB (2000) Probability density function calculations of local extinction and no production in piloted-jet turbulent methane/air flames. Proc Combust Inst 28:133–139

    Article  Google Scholar 

  • Tomlin AS, Whitehouse L, Lowe R et al (2001) Low-dimensional manifolds in tropospheric chemical systems. Faraday Discuss 120:125–146

    Article  Google Scholar 

  • Tonse SR, Moriarty NW, Brown NJ et al (1999) PRISM: Piece-wise reusable implementation of solution mapping. An economical strategy for chemical kinetics. Israel J Chem 39:97–106

    Article  Google Scholar 

  • Tonse SR, Moriarty NW, Frenklach M et al (2003) Computational economy improvements in PRISM. Int J Chem Kinet 35:438–452

    Article  Google Scholar 

  • Turányi T (1994) Parametrization of reaction mechanisms using orthonormal polynomials. Comput Chem 18(1):45–54

    Article  Google Scholar 

  • Turányi T (1995) Application of repro-modelling for the reduction of combustion mechanisms. Proc Combust Inst 25:948–955

    Google Scholar 

  • van Oijen JA, de Goey LPH (2000) Modelling of premixed laminar flames using flamelet generated manifolds. Comb Sci Tech 161:113–137

    Article  Google Scholar 

  • van Oijen JA, de Goey LPH (2002) Modelling of premixed counterflow flames using the flamelet-generated manifold method. Combust Theory Model 6:463–478

    Article  Google Scholar 

  • van Oijen JA, Lammers FA, de Goey LPH (2001) Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust Flame 127:2124–2134

    Article  Google Scholar 

  • Venkatech PK, Chang AY, Dean AM et al (1997) Parameterization of pressure- and temperature-dependent kinetics in multiple well reactions. AIChE 43:1331–1340

    Article  Google Scholar 

  • Verhoeven LM, Ramaekers WJS, van Oijen JA et al (2012) Modeling non-premixed laminar co-flow flames using flamelet-generated manifolds. Combust Flame 159(1):230–241

    Article  Google Scholar 

  • Vervisch PE, Colin O, Michel J-B et al (2011) NO relaxation approach (NORA) to predict thermal NO in combustion chambers. Combust Flame 158:1480–1490

    Article  Google Scholar 

  • Wang LG, Fox RO (2003) Application of in situ adaptive tabulation to CFD simulation of nano-particle formation by reactive precipitation. Chem Eng Sci 58(19):4387–4401

    Google Scholar 

  • Wang SW, Balakrishnan S, Georgopoulos P (2005) Fast equivalent operational model of tropospheric alkane photochemistry. AIChE J 51(4):1297–1303

    Article  Google Scholar 

  • Xie N, Battaglia F, Fox RO (2004) Simulations of multiphase reactive flows in fluidized beds using in situ adaptive tabulation. Combust Theor Model 8(2):195–209

    Article  Google Scholar 

  • Xu J, Pope SB (2000) PDF calculations of turbulent nonpremixed flames with local extinction. Combust Flame 123(3):281–307

    Article  Google Scholar 

  • You XQ, Packard A, Frenklach M (2012) Process informatics tools for predictive modeling: Hydrogen combustion. Int J Chem Kinet 44(2):101–116

    Article  Google Scholar 

  • You XQ, Russi T, Packard A et al (2011) Optimization of combustion kinetic models on a feasible set. Proc Combust Inst 33:509–516

    Article  Google Scholar 

  • Zádor J, Taatjes CA, Fernandes RX (2011) Kinetics of elementary reactions in autoignition chemistry. Prog Energy Combust Sci 37(4):371

    Article  Google Scholar 

  • Zhang P, Law CK (2009) A fitting formula for the falloff curves of unimolecular reactions. Int J Chem Kinet 41:727–734

    Article  Google Scholar 

  • Zhang P, Law CK (2011) A fitting formula for the falloff curves of unimolecular reactions, II: Tunneling effects. Int J Chem Kinet 43:31–42

    Article  Google Scholar 

Download references

Acknowledgments

TT acknowledges the financial support of OTKA grants K84054 and NN100523. AST acknowledges the financial support of EPSRC (GR/R39597/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Turányi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Turányi, T., Tomlin, A.S. (2013). Storage of Chemical Kinetic Information. In: Battin-Leclerc, F., Simmie, J., Blurock, E. (eds) Cleaner Combustion. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5307-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5307-8_19

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5306-1

  • Online ISBN: 978-1-4471-5307-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics