Characterization of Soot

  • Cristina Arnal
  • Michela Alfè
  • Valentina Gargiulo
  • Anna Ciajolo
  • María U. Alzueta
  • Ángela Millera
  • Rafael Bilbao
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The characterization of physical and chemical properties of the carbon particulate matter commonly named soot is relevant in the research on pollutants emitted in the atmosphere from combustion and industrial plants. The selection and the standardization of advanced analytical methods are necessary to provide reliable and reproducible results on the characteristics of carbon material. This chapter reports an overview of the main off-line techniques available to characterize carbon materials as: elemental analysis, physical adsorption with the determination of the specific surface area, electronic microscopy techniques, X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, infrared spectroscopy, soot reactivity toward O2 and NO, UV–Visible spectroscopy, size exclusion chromatography and fluorescence spectroscopy. The results of the implementation of these techniques on a commercial standard carbon material (Printex-U carbon black), considered as analog of soot, are reported as case study.

Keywords

Porosity Furnace Graphite Benzene Polysaccharide 

Notes

Acknowledgments

This work was made with the support and in the frame of COST Action CM0901. Evonik Degussa GmbH is acknowledged for the Printex-U supplied. C. Arnal, M.U. Alzueta, A. Millera and R. Bilbao express their gratitude to the European Social Fund (ESF), MINECO and FEDER (Project CTQ2012-34423) for financial support. C. Arnal acknowledges the Ministerio de Educación for the predoctoral grant awarded (AP2008-03449), COST Action CM0901 and Obra social CAI through Programa Europa for the grants awarded. M. Alfè, V. Gargiulo and A. Ciajolo gratefully acknowledge the Ministero dello Sviluppo Economico within the “Accordo di Programma CNR-MSE, Gruppo Tematico Carbone Pulito- Fondo per il Finanziamento Attività di Ricerca e Sviluppo di Interesse Generale per il Sistema Elettrico Nazionale and NIPS (Nanoparticle Impact on Pulmonary Surfactant Interfacial Properties)-Seed Project 2009-IIT for the financial support.

References

  1. Aarna I, Suuberg EM (1997) A review of the kinetics of the nitric oxide carbon reaction. Fuel 76:475–491CrossRefGoogle Scholar
  2. Acik M, Mattevi C, Gong C et al (2010) The role of intercalated water in multilayered graphene oxide. ACS Nano 4:5861–5868CrossRefGoogle Scholar
  3. Ahlström AF, Odenbrand CUI (1989) Combustion characteristics of soot deposits from diesel engines. Carbon 27:475–483CrossRefGoogle Scholar
  4. Alfè M, Apicella B, Barbella R et al (2007) Distribution of soot molecular weight/size along premixed flames as inferred by size exclusion chromatography. Energy Fuels 21:136–140CrossRefGoogle Scholar
  5. Alfè M, Apicella B, Tregrossi A et al (2008) Identification of large polycyclic aromatic hydrocarbons in carbon particulates formed in a fuel-rich premixed ethylene flame. Carbon 46:2059–2066CrossRefGoogle Scholar
  6. Alfè M, Apicella B, Barbella R et al (2009) Structure-property relationship in nanostructures of young and mature soot in premixed flames. Proc Combust Inst 32:697–704CrossRefGoogle Scholar
  7. Alfè M, Apicella B, Rouzaud JN et al (2010) The effect of temperature on soot properties in premixed methane flames. Combust Flame 157:1959–1965Google Scholar
  8. Apicella B, Barbella R, Ciajolo A et al (2003) Comparative analysis of the structure of carbon materials relevant in combustion. Chemosphere 51:1063–1069CrossRefGoogle Scholar
  9. Apicella B, Alfè M, Barbella R et al (2004) Aromatic structures of carbonaceous materials and soot inferred by spectroscopic analysis. Carbon 42:1583–1589CrossRefGoogle Scholar
  10. Armas O, Yehliu K, Boehman AL (2010) Effect of alternative fuels on exhaust emissions during diesel engine operation with matched combustion phasing. Fuel 89:438–456CrossRefGoogle Scholar
  11. Arnal C, Esarte C, Abián M et al (2010) Characterization and reactivity of soots obtained under different combustion conditions. Chem Eng Trans 22:251–256Google Scholar
  12. Arnal C, Alzueta MU, Millera A et al (2012a) Influence of water vapor addition on soot oxidation at high temperature. Energy 43:55–63CrossRefGoogle Scholar
  13. Arnal C, Alzueta MU, Millera A et al (2012b) Experimental and kinetic study of the interaction of a commercial soot with NO at high temperature. Combust Sci Technol 184:1191–1206CrossRefGoogle Scholar
  14. Atalla RH, Agarwal UP, Bond JS (1992) Raman spectroscopy. In: Lin SY, Dence CW (eds) Methods in lignin Chemistry. Springer-Verlag, BerlinGoogle Scholar
  15. Atribak I, Bueno-López A, García-García A (2010) Uncatalysed and catalysed soot combustion under NOx + O2: Real diesel versus model soots. Combust Flame 157:2086–2094CrossRefGoogle Scholar
  16. Berlman IB (1971) Handbook of fluorescence spectra of aromatic molecules, 2nd edn. Academic Press, New YorkGoogle Scholar
  17. Beyssac O, Goffe B, Petitet JP et al (2003) On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochim Acta A 59:2267–2276CrossRefGoogle Scholar
  18. Biagini E, Pintus S, Tognotti L (2005) Characterization of high heating-rate chars from alternative fuels using an electrodynamic balance. Proc Combust Inst 30:2205–2212CrossRefGoogle Scholar
  19. Birkholz M (2006) Thin film analysis by X-ray scattering. Wiley-VC H, WeinheimGoogle Scholar
  20. Brown ME (2001) Introduction to thermal analysis, 2nd edn. Kluwer Academic Publisher, LondonGoogle Scholar
  21. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  22. Brunauer S, Deming LS, Deming WE et al (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732CrossRefGoogle Scholar
  23. Bruno A, Alfè M, Ciajolo A et al (2008) Time-resolved fluorescence polarization anisotropy of multimodal samples: the asphaltene case. Appl Phys B: Lasers Opt 90:61–67CrossRefGoogle Scholar
  24. Bushell GC, Yan YD, Woodfield D, Raper J, Amal R (2002) On techniques for the measurement of the mass fractal dimension of aggregates. Adv Colloid Interface Sci 95:1–50CrossRefGoogle Scholar
  25. Buzea C, Pacheco Blandino II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17-MR172Google Scholar
  26. Cai J, Lu N, Sorensen CM (1995) Analysis of fractal cluster morphology parameters: structural coefficient and density autocorrelation function cutoff. J Colloid Int Sci 171:470–473CrossRefGoogle Scholar
  27. Carrasco-Marín F, López-Ramón MV, Moreno-Castilla C (1993) Applicability of the Dubinin-Radushkevich equation to carbon dioxide adsorption on activated carbons. Langmuir 9:2758–2760CrossRefGoogle Scholar
  28. Centrone A, Brambilla L, Renouard T et al (2005) Structure of new carbonaceous materials: the role of vibrational spectroscopy. Carbon 43:1593–1609CrossRefGoogle Scholar
  29. Cetin E, Moghtaderi B, Gupta R et al (2004) Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 83:2139–2150CrossRefGoogle Scholar
  30. Ciajolo A, Alfè M, Apicella B et al (2009) Characterization of carbon particulate matter relevant in combustion. Chem Eng Trans 17:99–104Google Scholar
  31. Clar E (1964) Polycyclic hydrocarbons. Academic Press, New YorkCrossRefGoogle Scholar
  32. Cuesta A, Dhamelincourt P, Laureyns J et al (1998) Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials. J Mater Chem 8:2875–2879CrossRefGoogle Scholar
  33. D’Anna A (2009) Combustion-formed nanoparticles. Proc Combust Inst 32:593–613CrossRefGoogle Scholar
  34. Darmstadt H, Roy C, Kaliaguine S et al (2000) Solid state 13C-NMR spectroscopy and XRD studies of commercial and pyrolytic carbon blacks. Carbon 38:1279–1287CrossRefGoogle Scholar
  35. Donohue MD, Aranovich GL (1998) Adsorption hysteresis in porous solids. J Colloid Interf Sci 205:121–130CrossRefGoogle Scholar
  36. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Elsevier Science, Academic Press, USAGoogle Scholar
  37. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B: Condens Matter 61:14095–14107CrossRefGoogle Scholar
  38. Ferraro JR, Nakamoto K, Brown CW (2003) Introductory Raman spectroscopy, 2nd edn. Elsevier, San DiegoGoogle Scholar
  39. Fetzer JC (2000) Large (C >=24) Polycyclic aromatic hydrocarbons: Chemistry and analysis. Wiley-Interscience, New YorkGoogle Scholar
  40. Giechaskiel B, Alfoldy B, Drossinos Y (2009) A metric for health effects studies of diesel exhaust particles. J Aerosol Sci 40:639–651CrossRefGoogle Scholar
  41. González-Martín ML, Valenzuela-Calahorro C, Gómez-Serrano V (1994) Characterization study of carbonaceous materials. Calorimetric heat of adsorption of p-nitrophenol. Langmuir 10:844–854CrossRefGoogle Scholar
  42. Goodhew PJ, Humphreys J, Beanland R (2001a) The scanning electron microscope. In: Electron Microscopy and Analysis, 3rd edn. (electronic copy) Taylor and Francis Books UK. Available via Core Materials. http://es.scribd.com/doc/27762962/The-Scanning-Electron-Microscope. Accessed 26 Feb 2012
  43. Goodhew PJ, Humphreys J, Beanland R (2001b) Microscopy with light and electrons. In: Electron Microscopy and Analysis, 3rd edn. (electronic copy) Taylor and Francis Books UK. Available via Core Materials. http://es.scribd.com/doc/27761327/Microscopy-With-Light-and-Electrons. Accessed 26 Feb 2012
  44. Guerrero M, Ruiz MP, Millera A et al (2008) Characterization of biomass chars formed under different devolatilization conditions: differences between rice husk and eucalyptus. Energy Fuels 22:1275–1284CrossRefGoogle Scholar
  45. Hansen J, Nazarenko L (2004) Soot climate forcing via snow and ice albedos. P Natl Acad Sci USA 101:423–428CrossRefGoogle Scholar
  46. Haghseresht F, Lu GQ, Whittaker AK (1999) Carbon structure and porosity of carbonaceous adsorbents in relation to their adsorption properties. Carbon 37:1491–1497CrossRefGoogle Scholar
  47. Herod AA, Lazaro MJ, Suelves I et al (2000) Size exclusion chromatography of soots and coalderived materials with 1-methyl-2-pyrrolidinone as eluent: Observations on high molecular mass material. Energy Fuels 14:1009–1020CrossRefGoogle Scholar
  48. Higgins KJ, Jung H, Kittelson DB et al (2003) Kinetics of diesel nanoparticle oxidation. Environ Sci Technol 37:1949–1954CrossRefGoogle Scholar
  49. Hussain R, Qadeer R, Ahmad M et al (2000) X-ray diffraction study of heat-treated graphitized and ungraphitized carbon. Turk J Chem 24:177–183Google Scholar
  50. Illán-Gómez MJ, Linares-Solano A, Salinas-Martínez de Lecea C et al (1993) NO reduction by activated carbons. 1. The role of carbon porosity and surface-area. Energy Fuels 7:146-154Google Scholar
  51. Ishiguro T, Takatori Y, Akihama K (1997) Microstructure of diesel soot particles probed by Electron-Microscopy- first observation of inner-core and outer shell. Combust Flame 108:231–234CrossRefGoogle Scholar
  52. Iwashita N, Park CR, Fujimoto H et al (2004) Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 42:701–714CrossRefGoogle Scholar
  53. Jäger C, Henning T, Schlögl R et al (1999) Spectral Properties of Carbon Black. J Non-Cryst Solids 258:161–179CrossRefGoogle Scholar
  54. Jakubov TS (2008) The reasons behind adsorption hysteresis In: Bottani EJ and Tascón JMD (eds) Adsorption by carbons, Elsevier Ltd., UKGoogle Scholar
  55. Jawhari T, Roid A, Casado J (1995) Raman-spectroscopic characterization of some commercially available carbon-black materials. Carbon 33:1561–1565CrossRefGoogle Scholar
  56. Jung J, Lee JH, Song S et al (2008) Measurement of soot oxidation with NO2-O2-H2O in a flow reactor simulating diesel engine DPF. Int J Automot Technol 9:423–428CrossRefGoogle Scholar
  57. Kameya Y, Hanamura K (2011) Kinetic and Raman spectroscopic study on catalytic characteristics of carbon blacks in methane decomposition. Chem Eng J 173:627–635CrossRefGoogle Scholar
  58. Kapoor A, Ritter JA, Yang RT (1989) On the Dubinin-Radushkevich equation for adsorption in microporous solids in the Henry’s law region. Langmuir 5:1118–1121CrossRefGoogle Scholar
  59. Köylü ÜÖ, Faeth GM, Farias TL, Carvalho MG (1995a) Fractal and projected structure properties of soot aggregates. Combust Flame 100:621–633CrossRefGoogle Scholar
  60. Köylü ÜÖ, Xing Y, Rosner DE (1995b) Fractal morphology analysis of combustion-generated aggregates using angular light scattering and electron microscope images. Langmuir 11:4848–4854CrossRefGoogle Scholar
  61. Kühner G, Voll M (1993) Manufacture of carbon black. In: Donnet JB, Bansal RC, Wang MJ (eds) Carbon black, 2nd edn. Marcel Dekker Inc., New YorkGoogle Scholar
  62. Lapuerta M, Oliva F, Agudelo JR et al (2012) Effect of fuel on the soot nanostructure and consequences on loading and regeneration of diesel particulate filters. Combust Flame 159:844–853CrossRefGoogle Scholar
  63. Levenspiel O (1999) Chemical reaction engineering, 3rd edn. John Wiley & Sons Inc., New YorkGoogle Scholar
  64. Lu L, Sahajwalla V, Kong C et al (2001) Quantitative X-ray diffraction analysis and its application to various coals. Carbon 39:1821–1833CrossRefGoogle Scholar
  65. Lu L, Kong C, Sahajwalla V et al (2002) Char structural ordering during pyrolysis and combustion and its influence on char reactivity. Fuel 81:1215–1225CrossRefGoogle Scholar
  66. Luis IC (1987) Chemistry of pitch carbonization. Fuel 66:1527–1532CrossRefGoogle Scholar
  67. Mandelbrot BB (1975) Les objets fractals: forme, hasard et dimension. Flammarion, ParisMATHGoogle Scholar
  68. Martín-Martínez JM (1990) Generalidades sobre adsorción física de gases y vapores en carbones. In: Secretariado de Publicaciones de la Universidad de Alicante (ed) Adsorción física de gases y vapores por carbones, Espagrafic (electronic copy). Available via Universidad de Alicante: http://rua.ua.es/dspace/bitstream/10045/4291/4/adsorcion_fisica_2.pdf. Accessed 12 Feb 2012
  69. Megaridis CM, Dobbins RA (1990) Morphological description of flame-generated materials. Combust Sci Technol 71:95–109CrossRefGoogle Scholar
  70. Mendiara T, Domene MP, Millera A et al (2005) An experimental study of the soot formed in the pyrolysis of acetylene. J Anal Appl Pyrol 74:486–493CrossRefGoogle Scholar
  71. Mendiara T, Alzueta MU, Millera A et al (2008) Influence of the NO concentration and the presence of oxygen in the acetylene soot reaction with NO. Energy Fuels 22:284–290CrossRefGoogle Scholar
  72. Neeft JPA, Nijhuis TX, Smakman E et al (1997) Kinetics of the oxidation of diesel soot. Fuel 76:1129–1136CrossRefGoogle Scholar
  73. Nejar N, Makkee M, Illán-Gómez MJ (2007) Catalytic removal of NOx and soot from diesel exhaust: Oxidation behaviour of carbon materials used as model soot. Appl Catal B 75:11–16CrossRefGoogle Scholar
  74. Oberlin A (1989) TEM studies of carbonization and graphitization. In: Thrower PA (ed) Chemistry and physics of carbon, vol 22. Marcel Dekker Inc., New York, pp 1–143Google Scholar
  75. Paredes JI, Villar-Rodil S, Solis-Fernandez P et al (2009) Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 25:5957–5968CrossRefGoogle Scholar
  76. Park HY, Seo SI (2007) Characteristics of residual carbon derived from the combustion of vacuum residue in a test furnace. Environ Eng Res 12:109–117CrossRefGoogle Scholar
  77. Peña MA (2011) Introducción. In: Faraldos M, Goberna C (eds) Técnicas de análisis y caracterización de materiales, 2nd edn. Consejo Superior de Investigaciones Científicas, MadridGoogle Scholar
  78. Rodil SE, Ferrari AC, Robertson J et al (2001) Raman and infrared modes of hydrogenated amorphous carbon nitride. J Appl Phys 89:5425–5430CrossRefGoogle Scholar
  79. Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng R 37:129–281CrossRefGoogle Scholar
  80. Rouzaud JN, Clinard C (2002) Quantitative high-resolution transmission electron microscopy: a promising tool for carbon materials characterization. Fuel Process Technol 77–78:229–235CrossRefGoogle Scholar
  81. Ruiz MP, Callejas A, Millera A et al (2007) Reactivity towards O2 and NO of the soot formed from ethylene pyrolysis at different temperatures. Int J Chem Reactor Eng 5:A50CrossRefGoogle Scholar
  82. Russo C, Stanzione F, Tregrossi A et al (2012) The effect of temperature on the condensed phases formed in fuel-rich premixed benzene flames. Combust Flame 159:2233–2242CrossRefGoogle Scholar
  83. Sánchez NE, Callejas A, Millera A et al (2012) Formation of PAH and soot during acetylene pyrolysis at different gas residence times and reaction temperatures. Energy 43:30–36CrossRefGoogle Scholar
  84. Santamaria A, Yang N, Eddings E et al (2010) Chemical and morphological characterization of soot and soot precursors generated in an inverse diffusion flame with aromatic and aliphatic fuels. Combust Flame 157:33–42CrossRefGoogle Scholar
  85. Seong HJ, Boehman AL (2010) Impact of intake oxygen enrichment on oxidative reactivity and properties of diesel soot. Energy Fuels 25:602–616CrossRefGoogle Scholar
  86. Setiabudi A, Makkee M, Moulijn JA (2004) The role of NO2 and O2 in the accelerated combustion of soot in diesel exhaust gases. Appl Catal B 50:185–194CrossRefGoogle Scholar
  87. Sharma A, Kyotani T, Tomita A (1999) A new quantitative approach for microstructural analysis of coal char using HRTEM images. Fuel 78:1203–1212CrossRefGoogle Scholar
  88. Shim H-S, Hajaligol MR, Baliga VL (2004) Oxidation behavior of biomass chars: pectin and Populus deltoides. Fuel 83:1495–1503CrossRefGoogle Scholar
  89. Shim H-S, Hurt RH, Yang NYC (2000) A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons. Carbon 38:29–45CrossRefGoogle Scholar
  90. Shimodaira N, Masui A, Takada A et al (2001) Structural information from the Raman spectra of activated carbon materials. American Carbon Society, 25th Biennial Conference on Carbon, Hyatt Regency Lexington, Lexington, 14–19 July 2001Google Scholar
  91. Shui HF (2005) Effect of coal extracted with NMP on its aggregation. Fuel 84:939–941CrossRefGoogle Scholar
  92. Silverstein M, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, New YorkGoogle Scholar
  93. Sing KSW (2008) Overview of physical adsorption by carbons. In: Bottani EJ and Tascón JMD (eds) Adsorption by carbons, Elsevier Ltd., UKGoogle Scholar
  94. Sing KSW, Everett DH, Haul RAW et al (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area porosity. Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  95. Song J, Song C, Tao Y et al (2011) Diesel soot oxidation during the late combustion phase. Combust Flame 158:446–451CrossRefGoogle Scholar
  96. Stratakis GA, Stamatelos AM (2003) Thermogravimetric analysis of soot emitted by a modern diesel engine run on catalyst-doped fuel. Combust Flame 132:157–169CrossRefGoogle Scholar
  97. Szekely J, Evans JW, Sohn HY (1976) Gas-solid reactions. Academic Press Inc., New YorkGoogle Scholar
  98. Tregrossi A, Barbella R, Ciajolo A et al (2007) Spectral properties of soot in the UV-Visible range. Combust Sci Technol 179:371–385CrossRefGoogle Scholar
  99. Vander Wal RL, Tomasek AJ (2003) Soot oxidation: dependence upon initial nanostructure. Combust Flame 134:1–9CrossRefGoogle Scholar
  100. Vo-Dinh T (1978) Multicomponent analysis by synchronous luminescence spectrometry. Anal Chem 50:396–401CrossRefGoogle Scholar
  101. Vollebregt S, Ishihara R, Tichelaar FD et al (2012) Influence of the growth temperature on the first and second-order Raman band ratios and widths of carbon nanotubes and fibers. Carbon 50:3542–3554CrossRefGoogle Scholar
  102. Wang WX, Thomas KM, Cai HY et al (1996) NO release and reactivity of chars during combustion: The effect of devolatilization temperature and heating rate. Energy Fuels 10:409–416CrossRefGoogle Scholar
  103. Williams DB, Carter CB (2009) Transmission Electron Microscopy, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  104. Xi J, Zhong BJ (2006) Soot in diesel combustion systems. Chem Eng Technol 29:665–673CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Cristina Arnal
    • 1
  • Michela Alfè
    • 2
  • Valentina Gargiulo
    • 2
  • Anna Ciajolo
    • 2
  • María U. Alzueta
    • 1
  • Ángela Millera
    • 1
  • Rafael Bilbao
    • 1
  1. 1.ThermoChemical Processes Group (GPT), Aragón Institute of Engineering Research (I3A)University of Zaragoza. Río Ebro CampusZaragozaSpain
  2. 2.Istituto di Ricerche sulla Combustione—C.N.RNaplesItaly

Personalised recommendations