Skip to main content

Prokaryote Genomes

  • Chapter
  • First Online:
Introduction to Evolutionary Genomics

Part of the book series: Computational Biology ((COBO,volume 17))

  • 3299 Accesses

Abstract

The world of prokaryotes (Bacteria and Archaea) is much more diverse than eukaryotes. After glancing the diversity of prokaryotes and their genome sequencing efforts, the basic structure of prokaryote genomes is discussed using Escherichia coli as an example, followed by discussions on GC content heterogeneity, horizontal gene transfer, codon usage, and plasmids. Finally, we discuss prokaryotic metagenomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fox, G. E., Magrum, L. J., Balch, W. E., Wolfe, R. S., & Woese, C. R. (1977). Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proceedings of the National Academy of Sciences of the United States of America, 74, 4537–4541.

    Article  Google Scholar 

  2. Woese, C. R., & Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America, 74, 5088–5090.

    Article  Google Scholar 

  3. Woese, C. R., et al. (1990). Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America, 87, 4576–4579.

    Article  Google Scholar 

  4. Koga, Y. (2012). Archaea. In Encyclopedia of evolution. Tokyo: Kyoritsu Shuppan (in Japanese).

    Google Scholar 

  5. Fukami-Kobayashi, K., Minezaki, Y., Tateno, Y., & Nishikawa, K. (2007). A tree of life based on protein domain organizations. Molecular Biology and Evolution, 24, 1181–1189.

    Article  Google Scholar 

  6. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    Google Scholar 

  7. Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S., & Miyata, T. (1989). Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proceedings of the National Academy of Sciences of the United States of America, 86, 9355–9359.

    Article  Google Scholar 

  8. Mori, H., et al. (1997). Post-sequencing genome analysis of Escherichia coli (in Japanese). Tanpakushitsu-Kakusan-Koso, 46, 1977–1985.

    Google Scholar 

  9. Yura, T., Mori, H., Nagai, H., Nagata, T., Ishihama, A., Fujita, N., Isono, K., Mizobuchi, K., & Nakata, A. (1992). Systematic sequencing of the Escherichia coli genome: Analysis of the 0–2.4 min region. Nucleic Acids Research, 20, 3305–3308.

    Article  Google Scholar 

  10. Fujita, N., Mori, H., Yura, T., & Ishihama, A. (1994). Systematic sequencing of the Escherichia coli genome: Analysis of the 2.4–4.1 min (110,917–193,643 bp) region. Nucleic Acids Research, 22, 1637–1639.

    Article  Google Scholar 

  11. Oshima, T., et al. (1996). A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7–28.0 min region on the linkage map. DNA Research, 3, 137–155.

    Article  Google Scholar 

  12. Aiba, H., et al. (1996). A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0–40.1 min region on the linkage map. DNA Research, 3, 363–377.

    Article  Google Scholar 

  13. Itoh, T., et al. (1996). A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1–50.0 min region on the linkage map. DNA Research, 3, 379–392.

    Article  Google Scholar 

  14. Yamamoto, Y., et al. (1997). Construction of a contiguous 874-kb sequence of the Escherichia coli – K12 genome corresponding to 50.0–68.8 min on the linkage map and analysis of its sequence features. DNA Research, 4, 91–113.

    Article  Google Scholar 

  15. Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J. F., Dougherty, B. A., Merrick, J. M., McKenney, K., Sutton, G., FitzHugh, W., Fields, C., Gocayne, J. D., Scott, J., Shirley, R., Liu, L.-I., Glodek, A., Kelley, J. M., Weidman, J. F., Phillips, C. A., Spriggs, T., Hedblom, E., Cotton, M. D., Utterback, T. R., Hanna, M. C., Nguyen, D. T., Saudek, D. M., Brandon, R. C., Fine, L. D., Fritchman, J. L., Fuhrmann, J. L., Geoghagen, N. S. M., Gnehm, C. L., McDonald, L. A., Small, K. V., Fraser, C. M., Smith, H. O., & Venter, J. C. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269, 496–512.

    Article  Google Scholar 

  16. http://en.wikipedia.org/wiki/Richard_Friedrich_Johannes_Pfeiffer

  17. Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H., & Roe, B. A. (1980). Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular Biology, 143, 161–178.

    Article  Google Scholar 

  18. Gregory, T. R., & DeSakke, R. (2005). Chapter 10: Comparative genomics in Prokaryotes. In T. R. Gregory (Ed.), The evolution of the genome. Burlington: Elsevier.

    Google Scholar 

  19. Blattner, F. R., Plunkett, G., 3rd, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B., & Shao, Y. (1997). The complete genome sequence of Escherichia coli K-12. Science, 277, 1453–1462.

    Article  Google Scholar 

  20. Kryukov, K., Sumiyama, K., Ikeo, K., Gojobori, T., & Saitou, N. (2012). A new database (GCD) on genome composition for eukaryote and prokaryote genome sequences and their initial analyses. Genome Biology and Evolution, 4, 501–512.

    Article  Google Scholar 

  21. Koonin, E. V. (2011). The Logic of chance. Upper Saddle River: Pearson Education.

    Google Scholar 

  22. Mahillon, J., & Chandler, M. (1998). Insertion sequences. Microbiology and Molecular Biology Reviews, 62, 725–774.

    Google Scholar 

  23. Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K., Yokoyama, K., Han, C. G., Ohtsubo, E., Nakayama, K., Murata, T., Tanaka, M., Tobe, T., Iida, T., Takami, H., Honda, T., Sasakawa, C., Ogasawara, N., Yasunaga, T., Kuhara, S., Shiba, T., Hattori, M., & Shinagawa, H. (2001). Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Research, 8, 11–22.

    Article  Google Scholar 

  24. Watanabe, H., Mori, H., Itoh, T., & Gojobori, T. (1997). Genome plasticity as a paradigm of eubacteria evolution. Journal of Molecular Evolution, 44(Suppl 1), S57–S64.

    Article  Google Scholar 

  25. Fraser, C. M., Gocayne, J. D., White, O., Adams, M. D., Clayton, R. A., Fleischmann, R. D., Bult, C. J., Kerlavage, A. R., Sutton, G., Kelley, J. M., Fritchman, R. D., Weidman, J. F., Small, K. V., Sandusky, M., Fuhrmann, J., Nguyen, D., Utterback, T. R., Saudek, D. M., Phillips, C. A., Merrick, J. M., Tomb, J. F., Dougherty, B. A., Bott, K. F., Hu, P. C., Lucier, T. S., Peterson, S. N., Smith, H. O., Hutchison, C. A., 3rd, & Venter, J. C. (1995). The minimal gene complement of Mycoplasma genitalium. Science, 270, 397–403.

    Article  Google Scholar 

  26. Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y., & Ishikawa, H. (2000). Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature, 407, 81–86.

    Article  Google Scholar 

  27. Cole, S. T., et al. (2001). Massive gene decay in the leprosy bacillus. Nature, 409, 1007–1011.

    Article  Google Scholar 

  28. Ferdows, M. S., & Barbour, A. G. (1989). Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proceedings of the National Academy of Sciences of the United States of America, 86, 5969–5973.

    Article  Google Scholar 

  29. Omura, S., Ikeda, H., Ishikawa, J., Hanamoto, A., Takahashi, C., Shinose, M., Takahashi, Y., Horikawa, H., Nakazawa, H., Osonoe, T., Kikuchi, H., Shiba, T., Sakaki, Y., & Hattori, M. (2001). Genome sequence of an industrial microorganism Streptomyces avermitilis: Deducing the ability of producing secondary metabolites. Proceedings of the National Academy of Sciences of the United States of America, 98, 12215–12220.

    Article  Google Scholar 

  30. Sueoka, N. (1962). On the genetic basis of variation and heterogeneity of DNA base composition. Proceedings of the National Academy of Sciences of the United States of America, 48, 582–592.

    Article  Google Scholar 

  31. Takahashi, M., Kryukov, K., & Saitou, N. (2009). Estimation of bacterial species phylogeny through oligonucleotide frequency distances. Genomics, 93, 525–533.

    Article  Google Scholar 

  32. Moran, N. A. (2002). Microbial minimalism: Genome reduction in bacterial pathogens. Cell, 108, 583–586.

    Article  Google Scholar 

  33. Rocha, E. P. C., & Danchin, A. (2002). Base composition bias might result from competition for metabolic resources. Trends in Genetics, 18, 291–294.

    Article  Google Scholar 

  34. Saitou, N. (2007). Introduction to evolutionary genomics (in Japanese). Tokyo: Kyoritsu Shuppan.

    Google Scholar 

  35. Karlin, S., & Ladunga, I. (1994). Comparisons of eukaryotic genome sequences. Proceedings of the National Academy of Sciences of the United States of America, 91, 12832–12836.

    Article  Google Scholar 

  36. Karlin, S., & Mrazek, J. (1997). Compositional differences within and between eukaryotic genomes. Proceedings of the National Academy of Sciences of the United States of America, 94, 10227–10232.

    Article  Google Scholar 

  37. Karlin, S., Mrazek, J., & Campbell, A. (1997). Compositional biases of bacterial genomes and evolutionary implications. Journal of Bacteriology, 179, 3899–3913.

    Google Scholar 

  38. Karlin, S. (2005). Statistical signals in bioinformatics. Proceedings of the National Academy of Sciences of the United States of America, 102, 13355–13362.

    Article  Google Scholar 

  39. Nakashima, H., Nishikawa, K., & Ooi, T. (1997). Differences in dinucleotide frequencies of human, yeast, and Escherichia coli genes. DNA Research, 4, 185–192.

    Article  Google Scholar 

  40. Nakashima, H., Ota, M., Nishikawa, K., & Ooi, T. (1998). Genes from nine genomes are separated into their organisms in the dinucleotide composition space. DNA Research, 5, 251–259.

    Article  Google Scholar 

  41. Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78, 1464–1480.

    Article  Google Scholar 

  42. Kanaya, S., Kinouchi, M., Abe, T., Kudo, Y., Yamada, Y., Nishi, T., Mori, H., & Ikemura, T. (2001). Analysis of codon usage diversity of bacterial genes with a self organizing map (SOM): Characterization of horizontally transferred genes with emphasis on the E. coli O157 genome. Gene, 276, 89–99.

    Article  Google Scholar 

  43. Abe, T., Kanaya, S., Kinouchi, M., Ichiba, Y., Kozuki, T., & Ikemura, T. (2003). Informatics for unveiling hidden genome signatures. Genome Research, 13, 693–702.

    Article  Google Scholar 

  44. Snel, B., Bork, P., & Huynen, M. A. (1999). Genome phylogeny based on gene content. Nature Genetics, 21, 108–110.

    Article  Google Scholar 

  45. Tekaia, F., Lazcano, A., & Dujon, B. (1999). The genomic tree as revealed from whole proteome comparisons. Genome Research, 9, 550–557.

    Google Scholar 

  46. Fitz-Gibbon, S. T., & House, C. H. (1999). Whole genome-based phylogenetic analysis of free living microorganisms. Nucleic Acids Research, 27, 4218–4222.

    Article  Google Scholar 

  47. Bansal, A. K., & Meyer, T. E. (2002). Evolutionary analysis by whole-genome comparisons. Journal of Bacteriology, 184, 2260–2272.

    Article  Google Scholar 

  48. Gupta, R. S. (1998). Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiology and Molecular Biology Reviews, 62, 1435–1491.

    Google Scholar 

  49. Gupta, R. S. (2001). The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins. International Microbiology, 4, 187–202.

    Article  Google Scholar 

  50. Dandekar, T., Snel, B., Huynen, M., & Bork, P. (1998). Conservation of gene order: A fingerprint of proteins that physically interact. Trends in Biochemical Sciences, 23, 324–328.

    Article  Google Scholar 

  51. Huynen, M. A., & Bork, P. (1998). Measuring genome evolution. Proceedings of the National Academy of Sciences of the United States of America, 95, 5849–5856.

    Article  Google Scholar 

  52. Kunisawa, T. (2001). Gene arrangements and phylogeny in the class Proteobacteria. Journal of Theoretical Biology, 213, 9–19.

    Article  Google Scholar 

  53. Suyama, M., & Bork, P. (2001). Evolution of prokaryotic gene order: Genome rearrangements in closely related species. Trends in Genetics, 17, 10–13.

    Article  Google Scholar 

  54. Pride, D. T., Meinersmann, R. J., Wassenaar, T. M., & Blaser, M. J. (2003). Evolutionary implications of microbial genome tetranucleotide frequency biases. Genome Research, 13, 145–155.

    Article  Google Scholar 

  55. Rzhetsky, A., & Nei, M. (1992). A simple method for estimating and testing minimum-evolution trees. Molecular Biology and Evolution, 9, 945–967.

    Google Scholar 

  56. Sawada, H., Suzuki, F., Matsuda, I., & Saitou, N. (1999). Phylogenetic analysis of Pseudomonas syringe pathovar suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. Journal of Molecular Evolution, 49, 627–644.

    Article  Google Scholar 

  57. Heinrichs, D. E., Yethon, J. A., & Whitfield, C. (1998). Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Molecular Microbiology, 30, 221–232.

    Article  Google Scholar 

  58. Nakamura, Y., Itoh, T., Matsuda, H., & Gojobori, T. (2004). Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nature Genetics, 36, 760–766.

    Article  Google Scholar 

  59. Abby, S. S., Tannier, E., Gouy, M., & Daubin, V. (2012). Lateral gene transfer as a support for the tree of life. Proceedings of the National Academy of Sciences of the United States of America, 109, 4962–4967.

    Article  Google Scholar 

  60. Doolittle, W. (1999). Phylogenetic classification and the universal tree. Science, 284, 2124–2129.

    Article  Google Scholar 

  61. Saitou, N. (2004). “Genomu to Shinka” (in Japanese, meaning ‘Genome and Evolution’ in English). Tokyo: Shinyosha.

    Google Scholar 

  62. Ikemura, T. (1981). Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: A proposal for a synonymous codon choice that is optimal for the E. coli translational system. Journal of Molecular Biology, 151, 389–409.

    Article  Google Scholar 

  63. Ikemura, T. (1982). Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. Journal of Molecular Biology, 158, 573–97.

    Article  Google Scholar 

  64. Ikemura, T. (1985). Codon usage and tRNA content in unicellular and multicellular organisms. Molecular Biology and Evolution, 2, 13–34.

    Google Scholar 

  65. Sharp, P. M., & Li, W. H. (1987). The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Molecular Biology and Evolution, 4, 222–30.

    Google Scholar 

  66. Kanaya, S., Yamada, Y., Kinouchi, M., Kudo, Y., & Ikemura, T. (2001). Codon usage and tRNA genes in eukaryotes: Correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. Journal of Molecular Evolution, 53, 290–298.

    Article  Google Scholar 

  67. Venter, J. C., et al. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66–74.

    Article  Google Scholar 

  68. Abe, T., Sugawara, T., Kanaya, S., & Ikemura, T. (2005). Novel phylogenetic studies of genomic sequence fragments derived from uncultured microbe mixtures in environmental and clinical samples. DNA Research, 12, 281–290.

    Article  Google Scholar 

  69. Rusch, D. B., et al. (2007). The Sorcerer II global ocean sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biology, 5, e77.

    Article  Google Scholar 

  70. Yooseph, S., et al. (2007). The Sorcerer II global ocean sampling expedition: Expanding the universe of protein families. PLoS Biology, 5, e16.

    Article  Google Scholar 

  71. Kurokawa, K., et al. (2007). Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Research, 14, 169–181.

    Article  MathSciNet  Google Scholar 

  72. Yatsunenko, T., et al. (2012). Human gut microbiome viewed across age and geography. Nature, 486, 222–227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Saitou, N. (2013). Prokaryote Genomes. In: Introduction to Evolutionary Genomics. Computational Biology, vol 17. Springer, London. https://doi.org/10.1007/978-1-4471-5304-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5304-7_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5303-0

  • Online ISBN: 978-1-4471-5304-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics