Skip to main content

Natural Selection

  • Chapter
  • First Online:

Part of the book series: Computational Biology ((COBO,volume 17))

Abstract

Basic concept of natural selection is first discussed, and purifying (negative) selection is shown to be much more prevalent than positive selection. Natural selection on haploids and diploids is discussed under both large populations and small populations. Natural selection at the genomic level is then described, covering various topics such as gain and loss of genes and purifying selection at synonymous sites and at noncoding regions. Positive selection for ape and human genes and detection of positive selection through genome-wide searches are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Darwin, C. (1859). On the origin of species. London: John Murray.

    Google Scholar 

  2. Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  3. Lewontin, R. (1974). The genetic basis of evolutionary change. New York: Columbia University Press.

    Google Scholar 

  4. Sato, J. J., Wolsan, M., Minami, S., Hosoda, T., Shinaga, S. H., Hiyama, K., Yamaguchi, Y., & Suzuki, H. (2009). Deciphering and dating the red panda’s ancestry and early adaptive radiation of Musteloidea. Molecular Phylogenetics and Evolution, 53, 907–922.

    Article  Google Scholar 

  5. Nishihara, H., Maruyama, S., & Okada, N. (2009). Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals. Proceedings of the National Academy of Sciences of the United States of America, 106, 5235–5240.

    Article  Google Scholar 

  6. Wloch, D. M., Szafraniec, K., Borts, R. H., & Korona, R. (2001). Direct estimate of the mutation rate and the distribution of fitness effects in the yeast Saccharomyces cerevisiae. Genetics, 159, 441–452.

    Google Scholar 

  7. Joseph, S. B., & Wall, D. W. (2004). Spontaneous mutations in diploid Saccharomyces cerevisiae: More beneficial than expected. Genetics, 168, 1817–1825.

    Google Scholar 

  8. Perfeito, L., Fernandes, L., Mota, C., & Gordo, I. (2007). Adaptive mutations in bacteria: High rate and small effects. Science, 317, 813–815.

    Article  Google Scholar 

  9. Eyre-Walker, A., & Keightley, P. D. (2007). The distribution of fitness effects of new mutations. Nature Reviews Genetics, 8, 610–681.

    Article  Google Scholar 

  10. Fox, A. L. (1932). The relationship between chemical constitution and taste. Proceedings of the National Academy of Sciences of the United States of America, 18, 115–120.

    Article  Google Scholar 

  11. Fisher, R. A., Ford, E. B., & Huxley, J. (1939). Taste-testing the anthropoid apes. Nature, 144, 750.

    Article  Google Scholar 

  12. Kim, U., et al. (2003). Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science, 299, 1221–1225.

    Article  Google Scholar 

  13. Wooding, S., et al. (2006). Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Nature, 440, 930–934.

    Article  Google Scholar 

  14. Wooding, S. (2006). Phenylthiocarbamide: A 75-year adventure in genetics and natural selection. Genetics, 172, 2015–2023.

    Google Scholar 

  15. Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Oxford University Press.

    Google Scholar 

  16. Ina, Y., & Gojobori, T. (1994). Statistical analysis of nucleotide sequences of the hemagglutinin gene of human influenza A viruses. Proceedings of the National Academy of Sciences of the United States of America, 91, 8388–8392.

    Article  Google Scholar 

  17. Hughes, A., & Nei, M. (1988). Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature, 335, 167–170.

    Article  Google Scholar 

  18. Sumiyama, K., Ueda, S., & Saitou, N. (2002). Adaptive evolution of the IgA hinge region in primates. Molecular Biology and Evolution, 19, 1093–1099.

    Article  Google Scholar 

  19. Hardy, G. H. (1908). Mendelian proportions in a mixed population. Science, 28, 49–50.

    Article  Google Scholar 

  20. Weinberg, W. (1908). Uber den Nachweis der Verbung beim Menschen. Jahreschefte des Vereins fur Vaterlandische Naturkunde in Wurttemburg, 64, 368–382.

    Google Scholar 

  21. Allison, A. C. (1955). Aspects of polymorphism in Man. Cold Spring Harbor Symposia on Quantitative Biology, 20, 239–251.

    Article  Google Scholar 

  22. Bubb, K. L., Bovee, D., Buckley, D., Haugen, E., Kibukawa, M., Paddock, M., Palmieri, A., Subramanian, S., Zhou, Y., Kaul, R., Green, P., & Olson, M. (2006). Scan of human genome reveals no new loci under ancient balancing selection. Genetics, 173, 2165–2177.

    Article  Google Scholar 

  23. Takebayashi, N., Brewer, P. B., Newbigin, E., & Uyenoyama, M. K. (2003). Patterns of variation within self-incompatibility loci. Molecular Biology and Evolution, 20, 1778–1794.

    Article  Google Scholar 

  24. Cho, S., Huang, Z. Y., Green, D. R., Smith, D. R., & Zhang, J. (2006). Evolution of the complementary sex-determination gene of honey bees: Balancing selection and trans-species polymorphisms. Genome Research, 16, 1366–1375.

    Article  Google Scholar 

  25. Hudson, R. R., & Kaplan, N. L. (1988). The coalescent process in models with selection and recombination. Genetics, 120, 831–840.

    Google Scholar 

  26. Teshima, K. M., & Innan, H. (2012). The coalescent with selection on copy number variants. Genetics, 190, 1077–1086.

    Article  Google Scholar 

  27. Takahata, N. (1990). A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. Proceedings of the National Academy of Sciences of the United States of America, 87, 2419–2423.

    Article  MATH  Google Scholar 

  28. Takahata, N., & Nei, M. (1985). Gene genealogy and variance of interpopulational nucleotide differences. Genetics, 110, 325–344.

    Google Scholar 

  29. Kimura, M. (1962). On the probability of fixation of mutant genes in a population. Genetics, 47, 713–719.

    Google Scholar 

  30. Kimura, M. (1957). Some problems of stochastic processes in genetics. Annals of Mathematical Statistics, 28, 882–901.

    Article  MATH  MathSciNet  Google Scholar 

  31. Ohta, T. (1973). Slightly deleterious mutant substitutions in evolution. Nature, 246, 96–98.

    Article  Google Scholar 

  32. Ohta, T. (1976). Role of very slightly deleterious mutations in molecular evolution and polymorphism. Theoretical Population Biology, 10, 254–275.

    Article  MATH  Google Scholar 

  33. Ohta, T. (1987). Very slightly deleterious mutations and the molecular clock. Journal of Molecular Evolution, 26, 1–6.

    Article  Google Scholar 

  34. Ohta, T. (1992). The nearly neutral theory of molecular evolution. Annual Review of Ecology and Systematics, 23, 263–286.

    Article  Google Scholar 

  35. Ohta, T. (2002). Near-neutrality in evolution of genes and gene regulation. Proceedings of the National Academy of Sciences of the United States of America, 99, 16134–16137.

    Article  Google Scholar 

  36. Eyre-Walker, A., Keightley, P. D., Smith, N. G., & Gaffney, D. (2002). Quantifying the slightly deleterious mutation model of molecular evolution. Molecular Biology and Evolution, 19, 2142–2149.

    Article  Google Scholar 

  37. Charlesworth, J., & Eyre-Walker, A. (2008). The McDonald-Kreitman test and slightly deleterious mutations. Molecular Biology and Evolution, 25, 1007–1015.

    Article  Google Scholar 

  38. Eyre-Walker, A., & Keightley, P. D. (2009). Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Molecular Biology and Evolution, 26, 2097–2108.

    Article  Google Scholar 

  39. Balbi, K. J., RochaE, P. C., & Feil, E. J. (2009). The temporal dynamics of slightly deleterious mutations in Escherichia coli and Shigella spp. Molecular Biology and Evolution, 26, 345–355.

    Article  Google Scholar 

  40. Sawyer, S. A., Parsch, J., Zhang, Z., & Hartl, D. L. (2007). Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 104, 6504–6510.

    Article  Google Scholar 

  41. Kimura, M. (1985). The role of compensatory neutral mutations in molecular evolution. Journal of Genetics, 64, 7–19.

    Article  Google Scholar 

  42. Ohta, T. (1988). Evolution by gene duplication and compensatory advantageous mutations. Genetics, 120, 841–847.

    Google Scholar 

  43. Ohta, T. (1989). Time for spreading of compensatory mutations under gene duplication. Genetics, 123, 579–584.

    Google Scholar 

  44. Kulathinal, R. J., Bettencourt, B. R., & Hartl, D. L. (2004). Compensated deleterious mutations in insect genomes. Science, 306, 1553–1554.

    Article  Google Scholar 

  45. Osada, N., & Akashi, H. (2012). Mitochondrial-nuclear interactions and accelerated compensatory evolution: Evidence from the primate cytochrome C oxidase complex. Molecular Biology and Evolution, 29, 337–346.

    Article  Google Scholar 

  46. Kaplan, N. L., Hudson, R. R., & Langley, C. H. (1989). The “hitchhiking effect” revisited. Genetics, 123, 887–899.

    Google Scholar 

  47. Charlesworth, B., Morgan, M. T., & Charlesworth, D. (1993). The effect of deleterious mutations on neutral molecular variation. Genetics, 134, 1289–1303.

    Google Scholar 

  48. Stephan, W. (2010). Genetic hitchhiking versus background selection: The controversy and its implications. Philosophical Transactions of the Royal Society B, 365, 1245–1253.

    Article  Google Scholar 

  49. Hanada, K., Suzuki, Y., & Gojobori, T. (2004). A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. Molecular Biology and Evolution, 21, 1074–1080.

    Article  Google Scholar 

  50. Gregory, T. R. (Ed.). (2005). The evolution of the genome. Burlington: Elsevier Academic.

    Google Scholar 

  51. Stephens, J. C., et al. (1998). Dating the origin of the CCR5-D32 AIDS-resistance allele by the coalescence of haplotypes. American Journal of Human Genetics, 62, 1507–1515.

    Article  Google Scholar 

  52. Sabeti, P. S., et al. (2005). The case for selection at CCR5-Δ32. PLoS Biology, 3, e378.

    Article  Google Scholar 

  53. Hedrick, P. W., & Verrelli, B. C. (2006). ‘Ground truth’ for selection on CCR5-Δ32. Trends in Genetics, 22, 293–296.

    Article  Google Scholar 

  54. Yamamoto, F., Cid, E., Yamamoto, M., & Blancher, A. (2012). ABO research in the modern era of genomics. Transfusion Medicine Reviews, 26, 103–118.

    Article  Google Scholar 

  55. Saitou, N., & Yamamoto, F. (1997). Evolution of primate ABO blood group genes and their homologous genes. Molecular Biology and Evolution, 14, 399–411.

    Article  Google Scholar 

  56. Calafell, F., Roubinet, F., Ramírez-Soriano, A., Saitou, N., Bertranpetit, J., & Blancher, A. (2008). Evolutionary dynamics of the human ABO gene. Human Genetics, 124, 123–135.

    Article  Google Scholar 

  57. Kitano, T., Blancher, A., & Saitou, N. (2012). The functional A allele was resurrected via recombination in the human ABO blood group gene. Molecular Biology and Evolution, 29, 1791–1796.

    Article  Google Scholar 

  58. Ikemura, T. (1981). Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: A proposal for a synonymous codon choice that is optimal for the E. coli translational system. Journal of Molecular Biology, 151, 389–409.

    Article  Google Scholar 

  59. Akashi, H. (1994). Synonymous codon usage in Drosophila melanogaster: Natural selection and translational accuracy. Genetics, 136, 927–935.

    Google Scholar 

  60. Kurland, C. G. (1991). Codon bias and gene expression. FEBS Letters, 285, 165–169.

    Article  Google Scholar 

  61. Hershberg, R., & Petrov, D. A. (2008). Selection on codon bias. Annual Review of Genetics, 42, 287–299.

    Article  Google Scholar 

  62. Ikemura, T. (1985). Codon usage and tRNA content in unicellular and multicellular organisms. Molecular Biology and Evolution, 2, 13–34.

    Google Scholar 

  63. Sharp, P. M., & Li, W. H. (1987). The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Molecular Biology and Evolution, 4, 222–230.

    Google Scholar 

  64. Akashi, H. (2003). Translational selection and yeast proteome evolution. Genetics, 164, 1291–1303.

    Google Scholar 

  65. Eyre-Walker, A. C. (1991). An analysis of codon usage in mammals: Selection or mutation bias? Journal of Molecular Evolution, 33, 442–449.

    Article  Google Scholar 

  66. Sharp, P. M., Averof, M., Lloyd, A. T., Matassi, G., & Peden, J. F. (1995). DNA sequence evolution: The sounds of silence. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 349, 241–247.

    Article  Google Scholar 

  67. Reed, R. (1996). Initial splice-site recognition and pairing during pre-mRNA splicing. Current Opinion in Genetics and Development, 6, 215–220.

    Article  Google Scholar 

  68. Blencowe, B. J. (2000). Exonic splicing enhancers: Mechanism of action, diversity and role in human genetic diseases. Trends in Biochemical Sciences, 25, 106–110.

    Article  Google Scholar 

  69. Takahashi, A. (2009). Effect of exonic splicing regulation on synonymous codon usage in alternatively spliced exons of Dscam. BMC Evolutionary Biology, 9, 214.

    Article  Google Scholar 

  70. Parmley, J. L., & Hurst, L. D. (2007). Exonic splicing regulatory elements skew synonymous codon usage near intron-exon boundaries in mammals. Molecular Biology and Evolution, 24, 1600–1603.

    Article  Google Scholar 

  71. Bejerano, G., et al. (2004). Ultraconserved elements in the human genome. Science, 304, 1321–1325.

    Article  Google Scholar 

  72. Schattner, P., & Diekhans, M. (2006). Regions of extreme synonymous codon selection in mammalian genes. Nucleic Acids Research, 34, 1700–1710.

    Article  Google Scholar 

  73. Lareau, L. F., Inada, M., Green, R. E., Wengrod, J. C., & Brenner, S. E. (2007). Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature, 446, 926–929.

    Article  Google Scholar 

  74. Lin, Z., Ma, H., & Nei, M. (2008). Ultraconserved coding regions outside the homeobox of mammalian Hox genes. BMC Evolutionary Biology, 8, 260.

    Article  Google Scholar 

  75. Suzuki, R., & Saitou, N. (2011). Exploration for functional nucleotide sequence candidates within coding regions of mammalian genes. DNA Research, 18, 177–187.

    Article  Google Scholar 

  76. Suzuki, R., & Saitou, N. (2013). Highly conserved nucleotide sequences within protein coding genes of eukaryotes. unpublished.

    Google Scholar 

  77. Zuckerkandl, E., & Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In V. Bryson & H. J. Vogel (Eds.), Evolving genes and proteins (pp. 97–166). New York: Academic.

    Google Scholar 

  78. Britten, R. J., & Davidson, E. H. (1971). Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Quarterly Review of Biology, 46, 111–138.

    Article  Google Scholar 

  79. King, M. C., & Wilson, A. C. (1975). Evolution at two levels in humans and chimpanzees. Science, 188, 107–116.

    Article  Google Scholar 

  80. Carroll, S. B. (2005). Evolution at two levels: On genes and form. PLoS Biology, 3, e245.

    Article  Google Scholar 

  81. Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.

    Google Scholar 

  82. Mouse Genome Sequencing Consortium. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature, 420, 520–562.

    Article  Google Scholar 

  83. International Human Genome Sequencing Consortium. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.

    Article  Google Scholar 

  84. Ahituv, N., Rubin, E. M., & Nobrega, M. A. (2004). Exploiting human–fish genome comparisons for deciphering gene regulation. Human Molecular Genetics, 13, R261–R266.

    Article  Google Scholar 

  85. Siepel, A., et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Research, 15, 1034–1050.

    Article  Google Scholar 

  86. Pennacchio, L. A., et al. (2006). In vivo enhancer analysis of human conserved non-coding sequences. Nature, 444, 499–502.

    Article  Google Scholar 

  87. Woolfe, A., et al. (2005). Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biology, 3, e7.

    Article  Google Scholar 

  88. Boffelli, D., et al. (2003). Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science, 299, 1391–1394.

    Article  Google Scholar 

  89. Takahashi, M., & Saitou, N. (2012). Identification and characterization of lineage-specific highly conserved noncoding sequences in mammalian genomes. Genome Biology and Evolution, 4, 641–657.

    Article  Google Scholar 

  90. Hughes, A. L., & Nei, M. (1989). Nucleotide substitution at major histocompatibility complex class II loci: Evidence for overdominant selection. Proceedings of the National Academy of Sciences of the United States of America, 86, 958–962.

    Article  Google Scholar 

  91. Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S., Wiebe, V., Kitano, T., Monaco, A. P., & Paabo, S. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418, 869–872.

    Article  Google Scholar 

  92. Zhang, J., Webb, D. M., & Podlaha, O. (2002). Accelerated protein evolution and origins of human-specific features. Foxp2 as an example. Genetics, 162, 1825–1835.

    Google Scholar 

  93. Shu, W., Yang, H., Zhang, L., Lu, M. M., & Morrisey, E. E. (2001). Characterization of a new subfamily of winged-helix/forkhead (Fox) genes that are expressed in the lung and act as transcriptional repressors. Journal of Biological Chemistry, 276, 27488–27497.

    Article  Google Scholar 

  94. Lai, C. S. L., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413, 519–523.

    Article  Google Scholar 

  95. Krause, J., et al. (2007). The derived FOXP2 variant of modern humans was shared with Neanderthals. Current Biology, 17, 1908–1912.

    Article  Google Scholar 

  96. Coop, G., Bullaughey, K., Luca, F., & Przeworski, M. (2008). The timing of selection at the human FOXP2 gene. Molecular Biology and Evolution, 25, 1257–1259.

    Article  Google Scholar 

  97. Fujita, E., Tanabe, Y., Shiota, A., Ueda, M., Suwa, K., Momoi, M. Y., & Momoi, T. (2008). Ultrasonic vocalization impairment of Foxp2 (R552H) knockin mice related to speech-language disorder and abnormality of Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 3117–3112.

    Article  Google Scholar 

  98. Enard, W., et al. (2009). A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell, 137, 961–971.

    Article  Google Scholar 

  99. Konopka, G., et al. (2009). Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature, 462, 213–217.

    Article  Google Scholar 

  100. Pollard, K. S., et al. (2006). An RNA gene expressed during cortical development evolved rapidly in humans. Nature, 433, 167–172.

    Article  Google Scholar 

  101. Pollard, K. S., et al. (2006). Forces shaping the fastest evolving regions in the human genome. PLoS Genetics, 2, e168.

    Article  Google Scholar 

  102. Prabhakar, A., Noonan, J. P., Pääbo, S., & Rubin, E. M. (2006). Accelerated evolution of conserved noncoding sequences in humans. Science, 314, 786.

    Article  Google Scholar 

  103. Bird, C. P., et al. (2007). Fast-evolving noncoding sequences in the human genome. Genome Biology, 8, R118.

    Article  Google Scholar 

  104. Prabhakar, S., et al. (2008). Human-specific gain of function in a developmental enhancer. Science, 321, 1346–1350.

    Article  Google Scholar 

  105. Galtier, N., & Duret, L. (2007). Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution. Trends in Genetics, 23, 273–277.

    Article  Google Scholar 

  106. Galtier, N., Duret, L., Glemin, S., & Ranwez, V. (2009). GC-biased gene conversion promotes the fixation of deleterious amino acid changes in primates. Trends in Genetics, 25, 1–5.

    Article  Google Scholar 

  107. Katzman, S., Kern, A. D., Pollard, K. S., Salama, S. R., & Haussler, D. (2010). GC-biased evolution near human accelerated regions. PLoS Genetics, 6, e1000960.

    Article  Google Scholar 

  108. Strathern, J. N., Shafer, B. K., & McGill, C. B. (1995). DNA synthesis errors associated with double-strand-break repair. Genetics, 140, 965–972.

    Google Scholar 

  109. Galtier, N., Piganeau, G., Mouchiroud, D., & Duret, L. (2001). GC-content evolution in mammalian genomes: The biased gene conversion hypothesis. Genetics, 159, 907–911.

    Google Scholar 

  110. Sumiyama, K., & Saitou, N. (2011). Loss-of–function mutation in a repressor module of human-specifically activated enhancer HACNS1. Molecular Biology and Evolution, 28, 3005–3007.

    Article  Google Scholar 

  111. Kryukov, G. V., Schmidt, S., & Sunyaev, S. (2005). Small fitness effect of mutations in highly conserved non-coding regions. Human Molecular Genetics, 14, 2221–2229.

    Article  Google Scholar 

  112. Keightley, P. D., Lercher, M. J., & Eyre-Walker, A. (2005). Evidence for widespread degradation of gene control regions in hominid genomes. PLoS Biology, 3, e42.

    Article  Google Scholar 

  113. Endo, T., Ikeo, K., & Gojobori, T. (1996). Large-scale search for genes on which positive selection may operate. Molecular Biology and Evolution, 13, 685–690.

    Article  Google Scholar 

  114. Konishi, S., Izawa, T., Lin, S. Y., Ebana, K., Fukuta, Y., Sasaki, T., & Yano, M. (2006). An SNP caused loss of seed shattering during rice domestication. Science, 312, 1392–1396.

    Article  Google Scholar 

  115. Shomura, A., Izawa, T., Ebana, K., Ebitani, T., Kanegae, H., Konishi, S., & Yano, M. (2008). Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 40, 1023–1028.

    Article  Google Scholar 

  116. Xia, Q., et al. (2009). Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science, 326, 433–436.

    Article  Google Scholar 

  117. Bazykin, G. A., Kondrashov, F. A., Ogurtsov, A. Y., Sunyaev, S., & Kondrashov, A. S. (2004). Positive selection at sites of multiple amino acid replacements since rat-mouse divergence. Nature, 429, 558–562.

    Article  Google Scholar 

  118. Beall, C. M., et al. (2010). Natural selection 11 on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan 12 highlanders. Proceedings of the National Academy of Sciences of the United States of America, 107, 11459–11464.

    Article  Google Scholar 

  119. Yi, X., et al. (2010). Sequencing of 50 human exomes reveals adaptation to high altitude. Science, 329, 75–78.

    Article  Google Scholar 

  120. Xu, S., Li, S., Yang, Y., Tan, J., Lou, H., Jin, W., Yang, L., Pan, X., Wang, J., Shen, Y., Wu, B., Wang, H., & Jin, L. (2011). A Genome-wide search for signals of high altitude adaptation in Tibetans. Molecular Biology and Evolution, 28, 1003–1011.

    Article  Google Scholar 

  121. Moreno-Estrada, A., Tang, K., Sikora, M., Marquès-Bonet, T., Casals, F., Navarro, A., Calafell, F., Bertranpetit, J., Stoneking, M., & Bosch, E. (2009). Interrogating 11 fast-evolving genes for signatures of recent positive selection in worldwide human populations. Molecular Biology and Evolution, 26, 2285–2297.

    Article  Google Scholar 

  122. Zhang, J., Nielsen, R., & Yang, Z. (2005). Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Molecular Biology and Evolution, 22, 2472–2479.

    Article  Google Scholar 

  123. Li, J. Z., et al. (2008). Worldwide human relationships inferred from genome-wide patterns of variation. Science, 319, 1100–1104.

    Article  Google Scholar 

  124. Bierne, N., & Eyre-Walker, A. (2004). The genomic rate of adaptive amino acid substitution in Drosophila. Molecular Biology and Evolution, 21, 1350–1360.

    Article  Google Scholar 

  125. Shapiro, J. A., Huang, W., Zhang, C., Hubisz, M. J., Lu, J., Turissini, D. A., Fang, S., Wang, H. Y., Hudson, R. R., Nielsen, R., Chen, Z., & Wu, C.-I. (2007). Adaptive genic evolution in the Drosophila genomes. Proceedings of the National Academy of Sciences of the United States of America, 104(7), 2271–2276.

    Article  Google Scholar 

  126. Andolfatto, P. (2007). Hitchhiking effects of recurrent beneficial amino acid substitutions in the Drosophila melanogaster genome. Genome Research, 17, 1755–1762.

    Article  Google Scholar 

  127. Markova-Raina, P., & Petrov, D. (2011). High sensitivity to aligner and high rate of false positives in the estimates of positive selection in the 12 Drosophila genomes. Genome Research, 21, 863–874.

    Article  Google Scholar 

  128. Carius, H. J., Little, T. J., & Ebert, D. (2001). Genetic variation in a host-parasite association: Potential for coevolution and frequency-dependent selection. Evolution, 55, 1136–1145.

    Google Scholar 

  129. Huttley, G. A., Easteal, S., Southey, M. C., Tesoriero, A., Giles, G. G., McCredie, M. R., Hopper, J. L., & Venter, D. J. (2000). Adaptive evolution of the tumour suppressor BRCA1 in humans and chimpanzees. Australian Breast Cancer Family Study. Nature Genetics, 25, 410–413.

    Article  Google Scholar 

  130. Sumiyama, K., Saitou, N., & Ueda, S. (2002). Adaptive evolution of the IgA hinge region in primates. Molecular Biology and Evolution, 19, 1093–1099.

    Article  Google Scholar 

  131. Johnson, M. E., Viggiano, L., Bailey, J. A., Abudul-Rauf, M., Goodwin, G., Rocchi, M., & Eichler, E. E. (2001). Positive selection of a gene family during the emergence of humans and African apes. Nature, 413, 514–519.

    Article  Google Scholar 

  132. Messier, W., & Stewart, C. B. (1997). Episodic adaptive evolution of primate lysozymes. Nature, 385, 151–154.

    Article  Google Scholar 

  133. Wyckoff, G. J., Wang, W., & Wu, C. I. (2000). Rapid evolution of male reproductive genes in the descent of man. Nature, 403, 304–309.

    Article  Google Scholar 

  134. Kitano, T., Sumiyama, K., Shiroishi, T., & Saitou, N. (1998). Conserved evolution of the Rh50 gene compared to its homologous Rh blood group gene. Biochemical and Biophysical Research Communications, 249, 78–85.

    Article  Google Scholar 

  135. Kitano, T., & Saitou, N. (1999). Evolution of the Rh blood group genes has experienced gene conversions and positive selection. Journal of Molecular Evolution, 49, 615–626.

    Article  Google Scholar 

  136. Zhang, J., Rosenberg, H. F., & Nei, M. (1998). Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proceedings of the National Academy of Sciences of the United States of America, 95, 3708–3713.

    Article  Google Scholar 

  137. Babarinde, I. A., & Saitou, N. (2013). Heterogeneous tempo and mode of conserved noncoding sequence evolution among four mammalian orders. Genome Biology and Evolution (advance access).

    Google Scholar 

  138. Nei, M. (2013b). Mutation-driven evolution. Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Saitou, N. (2013). Natural Selection. In: Introduction to Evolutionary Genomics. Computational Biology, vol 17. Springer, London. https://doi.org/10.1007/978-1-4471-5304-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5304-7_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5303-0

  • Online ISBN: 978-1-4471-5304-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics